6 research outputs found
METODOLOGÍA PARA EL DISEÑO DE BACHES EN UN PROCESO DE INYECCIÓN DE POLÍMEROS PARA RECOBRO MEJORADO, CONSIDERANDO FENÓMENOS DE INTERACCIÓN ROCA/FLUIDOS.
RESUMENLa inyección de polímeros es un proceso de recobro mejorado que fue desarrollado para realizar mejoras en la inyección de agua convencional. Esta técnica se enfoca en el aprovechamiento de la viscosidad, propia de las soluciones poliméricas para controlar la movilidad de los fluidos en la formación, con el fin de lograr un barrido más uniforme del yacimiento y a su vez lograr un mayor desplazamiento de petróleo. Debido a la necesidad de aumentar las reservas de hidrocarburos mediante el uso de estrategias para optimizar la producción de los campos, la implementación de este proceso se hace atractivo en yacimientos sometidos a inyección de agua con resultados desfavorables; sin embargo, para que sea exitosa su aplicación, el diseño del bache de polímero a ser inyectado juega un papel fundamental, ya que la naturaleza del flujo en medios porosos e interacciones roca-fluido conducen a la disminución de la eficacia del bache con una consecuente reducción en la eficiencia del proceso, razón por la cual los volúmenes a inyectar deben ser apropiadamente ajustados para tolerar pérdidas y/o cambios de concentración y aun así conservar sus propiedades fisicoquímicas para cumplir con el objetivo para el cual fue diseñado. Por lo anterior, la comprensión de estos fenómenos son consideraciones claves para el diseño del bache en estos procesos, procurando que éste se mantenga durante un cierto periodo mínimo de flujo aceptable.El presente artículo se enfoca en el desarrollo de una metodología para el diseño de baches en procesos de inyección de polímeros, basada en el análisis de los fenómenos de interacción roca-fluidos presentes en el medio poroso. Fue orientada inicialmente en la realización de una herramienta computacional útil para el pre-diseño del bache, la cual involucra modelos analíticos que incorporan éstos fenómenos, con el objetivo de sensibilizar variables inherentes al diseño del bache y observar el comportamiento de la concentración de un fluido inyectado en el yacimiento en función del tiempo y de la distancia y su afectación con los fenómenos de interacción presentes en el yacimiento. Seguidamente, ya que los modelos analíticos no contemplan a la vez todos los fenómenos de difusión, dispersión y adsorción en la roca, se desarrolló un modelo de simulación (sector model) en la plataforma STARS de CMG Ltda, la cual permite modelar proyectos de inyección de químicos, donde se consideraron los resultados obtenidos con la herramienta informática desarrollada, con el fin de realizar un análisis de sensibilidad de los parámetros operacionales que influyen en el diseño del bache. A partir del análisis de 1. Grupo de investigación recobro mejorado, Escuela de Ingeniería de Petróleos, Universidad Industrial de Santander, UIS, Carrera 27 calle 9, Bucaramanga, Colombia.2. Grupo de investigación recobro mejorado, Escuela de Ingeniería de Petróleos, Universidad Industrial de Santander, UIS, Carrera 27 calle 9, Bucaramanga, Colombia.3. Instituto Colombiano del Petróleo, ICP, Ecopetrol, Vía Piedecuesta # Km7, Piedecuesta, Colombia.REVISTA FUENTES, El Reventón Energético Vol. 12 Nº 2estas variables, y considerándose como unidad de análisis el factor de recobro, las tasas de producción de los fluidos producidos, velocidad de avance, eficiencia de barrido y cortes de agua, se pueden determinar las mejores condiciones operacionales del proceso. Una vez se determinan las mejores condiciones operacionales para el diseño del bache las cuales son: concentración, caudales de inyección y tiempos de inyección, se procede a ser incluidas en el modelo de simulación para el análisis de los resultados finales.Finalmente, los resultados obtenidos permitieron plantear una metodología para el diseño de baches en procesos de inyección de polímeros con el desarrollo de una herramienta computacional útil para el pre-diseño del bache, la cual involucra modelos analíticos como son: ley de Fick, modelo de Perkins, modelo de Warren, método de Bentsen y modelo de El-Khatib que tienen como base principal los fenómenos de interacción roca-fluidos presentes en el medio poroso y posteriormente empleando simulación numérica de yacimientos como herramienta de validación de los resultados obtenidos.Palabras clave: Inyección de polímeros, bache de polímero, modelos analíticos, simulación numérica, metodología.METHODOLOGY FOR SLUG DESIGNING DURING POLYMER INJECTION PROCESS, TAKING INTO ACCOUNT THE ROCK- FLUID INTERACTION WITHIN THE POROUS MEDIAABSTRACTPolymer Injection is an enhanced recovery process meant to improve conventional water flooding. This technique takes advantage of polymer´s solution viscosity to control fluids formation mobility and generate an uniform reservoir coverage, resulting in a better oil displacement.Due to actual needs of increasing hydrocarbon reserves through production optimization strategies, implementing this process is attractive in water flooding fields where recovery of hydrocarbon has not met expectations. To increase the probability of success, it is critical for the process, designing the right slug to be injected, since the nature of flow through porous media is governed by fluid- rock interaction that may affect flooding efficiency. The pill has to be big enough to withstand loss or change of polymer concentration preserving physical and chemical slug properties during the process. Understanding this phenomenon during design stages is very important to ensure acceptable flow during minimum required time.This paper develops a methodology to design polymer slugs during a chemical injection process based on rock- fluid interactions phenomena in porous media, starting from a computerized tool during pre-design stage, involving analytical models available through a sensitivity analysis of the design parameters and observe behaviours of the polymer concentration on the injected fluid as a function of time and length; and how interaction phenomena within reservoir affects its performance.Additionally, since analytical models do not take into account all diffusion, dispersion and adsorption phenomena on the rock, a simulation model (sector model) was developed on the STARS platform from CMG Ltd. to model chemical injection projects, where obtained results from computerized tools are processed through a sensibility analysis of operational parameters that affect the process. Considering Recovery factor analysis, production rates, water front velocity, flooding efficiency and water cut, the optimized operational conditions can be obtained. Once the best conditions for design concentration, injection rate and time are encountered, the next step is to include them in the simulation model for final analysis.Finally, obtained results allowed stablishing a methodology to design slugs during polymer injection using a computerized tool to pre- design the slug, that involves analytical models such as Fick law, Perkins model, Warren , Bentsen method and El- Khatib model which are based on the rock- fluid interaction within the porous media and finalising with a reservoir numeric simulation to validate the results.Keywords: Polymer injection, polymer slug, analytical models, numeric simulation, methodology
Early mobilisation in critically ill COVID-19 patients: a subanalysis of the ESICM-initiated UNITE-COVID observational study
Background
Early mobilisation (EM) is an intervention that may improve the outcome of critically ill patients. There is limited data on EM in COVID-19 patients and its use during the first pandemic wave.
Methods
This is a pre-planned subanalysis of the ESICM UNITE-COVID, an international multicenter observational study involving critically ill COVID-19 patients in the ICU between February 15th and May 15th, 2020. We analysed variables associated with the initiation of EM (within 72 h of ICU admission) and explored the impact of EM on mortality, ICU and hospital length of stay, as well as discharge location. Statistical analyses were done using (generalised) linear mixed-effect models and ANOVAs.
Results
Mobilisation data from 4190 patients from 280 ICUs in 45 countries were analysed. 1114 (26.6%) of these patients received mobilisation within 72 h after ICU admission; 3076 (73.4%) did not. In our analysis of factors associated with EM, mechanical ventilation at admission (OR 0.29; 95% CI 0.25, 0.35; p = 0.001), higher age (OR 0.99; 95% CI 0.98, 1.00; p ≤ 0.001), pre-existing asthma (OR 0.84; 95% CI 0.73, 0.98; p = 0.028), and pre-existing kidney disease (OR 0.84; 95% CI 0.71, 0.99; p = 0.036) were negatively associated with the initiation of EM. EM was associated with a higher chance of being discharged home (OR 1.31; 95% CI 1.08, 1.58; p = 0.007) but was not associated with length of stay in ICU (adj. difference 0.91 days; 95% CI − 0.47, 1.37, p = 0.34) and hospital (adj. difference 1.4 days; 95% CI − 0.62, 2.35, p = 0.24) or mortality (OR 0.88; 95% CI 0.7, 1.09, p = 0.24) when adjusted for covariates.
Conclusions
Our findings demonstrate that a quarter of COVID-19 patients received EM. There was no association found between EM in COVID-19 patients' ICU and hospital length of stay or mortality. However, EM in COVID-19 patients was associated with increased odds of being discharged home rather than to a care facility.
Trial registration ClinicalTrials.gov: NCT04836065 (retrospectively registered April 8th 2021)
Clinical and organizational factors associated with mortality during the peak of first COVID-19 wave : the global UNITE-COVID study
Purpose To accommodate the unprecedented number of critically ill patients with pneumonia caused by coronavirus disease 2019 (COVID-19) expansion of the capacity of intensive care unit (ICU) to clinical areas not previously used for critical care was necessary. We describe the global burden of COVID-19 admissions and the clinical and organizational characteristics associated with outcomes in critically ill COVID-19 patients. Methods Multicenter, international, point prevalence study, including adult patients with SARS-CoV-2 infection confirmed by polymerase chain reaction (PCR) and a diagnosis of COVID-19 admitted to ICU between February 15th and May 15th, 2020. Results 4994 patients from 280 ICUs in 46 countries were included. Included ICUs increased their total capacity from 4931 to 7630 beds, deploying personnel from other areas. Overall, 1986 (39.8%) patients were admitted to surge capacity beds. Invasive ventilation at admission was present in 2325 (46.5%) patients and was required during ICU stay in 85.8% of patients. 60-day mortality was 33.9% (IQR across units: 20%-50%) and ICU mortality 32.7%. Older age, invasive mechanical ventilation, and acute kidney injury (AKI) were associated with increased mortality. These associations were also confirmed specifically in mechanically ventilated patients. Admission to surge capacity beds was not associated with mortality, even after controlling for other factors. Conclusions ICUs responded to the increase in COVID-19 patients by increasing bed availability and staff, admitting up to 40% of patients in surge capacity beds. Although mortality in this population was high, admission to a surge capacity bed was not associated with increased mortality. Older age, invasive mechanical ventilation, and AKI were identified as the strongest predictors of mortality
Co-infection and ICU-acquired infection in COIVD-19 ICU patients: a secondary analysis of the UNITE-COVID data set
Background: The COVID-19 pandemic presented major challenges for critical care facilities worldwide. Infections which develop alongside or subsequent to viral pneumonitis are a challenge under sporadic and pandemic conditions; however, data have suggested that patterns of these differ between COVID-19 and other viral pneumonitides. This secondary analysis aimed to explore patterns of co-infection and intensive care unit-acquired infections (ICU-AI) and the relationship to use of corticosteroids in a large, international cohort of critically ill COVID-19 patients.Methods: This is a multicenter, international, observational study, including adult patients with PCR-confirmed COVID-19 diagnosis admitted to ICUs at the peak of wave one of COVID-19 (February 15th to May 15th, 2020). Data collected included investigator-assessed co-infection at ICU admission, infection acquired in ICU, infection with multi-drug resistant organisms (MDRO) and antibiotic use. Frequencies were compared by Pearson's Chi-squared and continuous variables by Mann-Whitney U test. Propensity score matching for variables associated with ICU-acquired infection was undertaken using R library MatchIT using the "full" matching method.Results: Data were available from 4994 patients. Bacterial co-infection at admission was detected in 716 patients (14%), whilst 85% of patients received antibiotics at that stage. ICU-AI developed in 2715 (54%). The most common ICU-AI was bacterial pneumonia (44% of infections), whilst 9% of patients developed fungal pneumonia; 25% of infections involved MDRO. Patients developing infections in ICU had greater antimicrobial exposure than those without such infections. Incident density (ICU-AI per 1000 ICU days) was in considerable excess of reports from pre-pandemic surveillance. Corticosteroid use was heterogenous between ICUs. In univariate analysis, 58% of patients receiving corticosteroids and 43% of those not receiving steroids developed ICU-AI. Adjusting for potential confounders in the propensity-matched cohort, 71% of patients receiving corticosteroids developed ICU-AI vs 52% of those not receiving corticosteroids. Duration of corticosteroid therapy was also associated with development of ICU-AI and infection with an MDRO.Conclusions: In patients with severe COVID-19 in the first wave, co-infection at admission to ICU was relatively rare but antibiotic use was in substantial excess to that indication. ICU-AI were common and were significantly associated with use of corticosteroids