1,352 research outputs found
Shattered Time: Can a Dissipative Time Crystal Survive Many-Body Correlations?
We investigate the emergence of a time crystal in a driven-dissipative
many-body spin array. In this system the interplay between incoherent spin
pumping and collective emission stabilizes a synchronized non-equilibrium
steady state which in the thermodynamic limit features a self-generated
time-periodic pattern imposed by collective elastic interactions. In contrast
to prior realizations where the time symmetry is already broken by an external
drive, here it is only spontaneously broken by the elastic exchange
interactions and manifest in the two-time correlation spectrum. Employing a
combination of exact numerical calculations and a second-order cumulant
expansion, we investigate the impact of many-body correlations on the time
crystal formation and establish a connection between the regime where it is
stable and a slow growth rate of the mutual information, signalling that the
time crystal studied here is an emergent semi-classical out-of-equilibrium
state of matter. We also confirm the rigidity of the time crystal to
single-particle dephasing. Finally, we discuss an experimental implementation
using long-lived dipoles in an optical cavity.Comment: v1: Initial commit; v2: Added references, fixed a couple typos, and
made some small, stylistic changes; v3: Update to reflect publication.
Includes additional references and some minor addition
Wearable activity technology and action-planning (WATAAP) to promote physical activity in cancer survivors: Randomised controlled trial protocol
Background/Objective: Colorectal and gynecologic cancer survivors are at cardiovascular risk due to comorbidities and sedentary behaviour, warranting a feasible intervention to increase physical activity. The Health Action Process Approach (HAPA) is a promising theoretical frame-work for health behaviour change, and wearable physical activity trackers offer a novel means of self-monitoring physical activity for cancer survivors.
Method: Sixty-eight survivors of colorectal and gynecologic cancer will be randomised into 12- week intervention and control groups. Intervention group participants will receive: a Fitbit AltaTM to monitor physical activity, HAPA-based group sessions, booklet, and support phone-call. Participants in the control group will only receive the HAPA-based booklet. Physical activity (using accelerometers), blood pressure, BMI, and HAPA constructs will be assessed at baseline, 12-weeks (post-intervention) and 24-weeks (follow-up). Data analysis will use the Group x Time interaction from a General Linear Mixed Model analysis.
Conclusions: Physical activity interventions that are acceptable and have robust theoretical underpinnings show promise for improving the health of cancer survivors
Unexpected sound omissions are signaled in human posterior superior temporal gyrus: An intracranial study
Context modulates sensory neural activations enhancing perceptual and behavioral performance and reducing prediction errors. However, the mechanism of when and where these high-level expectations act on sensory processing is unclear. Here, we isolate the effect of expectation absent of any auditory evoked activity by assessing the response to omitted expected sounds. Electrocorticographic signals were recorded directly from subdural electrode grids placed over the superior temporal gyrus (STG). Subjects listened to a predictable sequence of syllables, with some infrequently omitted. We found high-frequency band activity (HFA, 70-170 Hz) in response to omissions, which overlapped with a posterior subset of auditory-active electrodes in STG. Heard syllables could be distinguishable reliably from STG, but not the identity of the omitted stimulus. Both omission- and target-detection responses were also observed in the prefrontal cortex. We propose that the posterior STG is central for implementing predictions in the auditory environment. HFA omission responses in this region appear to index mismatch-signaling or salience detection processes
Methodology for High-Throughput Field Phenotyping of Canopy Temperature Using Airborne Thermography
Lower canopy temperature (CT), resulting from increased stomatal conductance, has been associated with increased yield in wheat. Historically, CT has been measured with hand-held infrared thermometers. Using the hand-held CT method on large field trials is problematic, mostly because measurements are confounded by temporal weather changes during the time required to measure all plots. The hand-held CT method is laborious and yet the resulting heritability low, thereby reducing confidence in selection in large scale breeding endeavors. We have developed a reliable and scalable crop phenotyping method for assessing CT in large field experiments. The method involves airborne thermography from a manned helicopter using a radiometrically-calibrated thermal camera. Thermal image data is acquired from large experiments in the order of seconds, thereby enabling simultaneous measurement of CT on potentially 1000s of plots. Effects of temporal weather variation when phenotyping large experiments using hand-held infrared thermometers are therefore reduced. The method is designed for cost-effective and large-scale use by the non-technical user and includes custom-developed software for data processing to obtain CT data on a single-plot basis for analysis. Broad-sense heritability was routinely >0.50, and as high as 0.79, for airborne thermography CT measured near anthesis on a wheat experiment comprising 768 plots of size 2 × 6 m. Image analysis based on the frequency distribution of temperature pixels to remove the possible influence of background soil did not improve broad-sense heritability. Total image acquisition and processing time was ca. 25 min and required only one person (excluding the helicopter pilot). The results indicate the potential to phenotype CT on large populations in genetics studies or for selection within a plant breeding program.This research was funded by the Australian Government National Collaborative Research Infrastructure Strategy (Australian Plant Phenomics Facility) and the Grains Research and Development Corporation (GRDC)
Consumption of the Total Western Diet Promotes Colitis and Inflammation-Associated Colorectal Cancer in Mice
Consumption of a Western type diet is a known risk factor for colorectal cancer. Our group previously developed the total Western diet (TWD) for rodents with energy and nutrient profiles that emulate a typical Western diet. In this study, we tested the hypothesis that consumption of the TWD would enhance colitis, delay recovery from gut injury and promote colon tumorigenesis. In multiple experiments using the azoxymethane + dextran sodium sulfate or ApcMin/+ mouse models of colitis-associated colorectal carcinogenesis (CAC), we determined that mice fed TWD experienced more severe and more prolonged colitis compared to their counterparts fed the standard AIN93G diet, ultimately leading to markedly enhanced colon tumorigenesis. Additionally, this increased tumor response was attributed to the micronutrient fraction of the TWD, and restoration of calcium and vitamin D to standard amounts ameliorated the tumor-promoting effects of TWD. Finally, exposure to the TWD elicited large scale, dynamic changes in mRNA signatures of colon mucosa associated with interferon (IFN) response, inflammation, innate immunity, adaptive immunity, and antigen processing pathways, among others. Taken together, these observations indicate that consumption of the TWD markedly enhanced colitis, delayed recovery from gut injury, and enhanced colon tumorigenesis likely via extensive changes in expression of immune-related genes in the colon mucosa
Concentration of anti-Müllerian hormone in dairy heifers is positively associated with productive herd life
Reliable biomarkers predictive of productive herd life (time in herd after birth of first calf) have heretofore not been discovered in dairy cattle. However, circulating concentrations of anti-Müllerian hormone (AMH) are positively associated with number of follicles or antral follicle count (AFC), ovarian function, and fertility, and approximately 25% of cows have a relatively low AFC and low AMH concentrations. The present study tested the hypothesis that heifers with the lowest AMH concentrations have suboptimal fertility and are removed from a herd for poor reproductive performance at a greater rate, and therefore have a shorter productive herd life compared with age-matched herdmates with higher AMH. To test this hypothesis, 11- to 15-mo-old Holstein heifers (n=281) were subjected to a single measurement of AMH. All heifers not removed from the herd had the opportunity to complete 2 lactations and start their third lactation after calving. During this time, performance and health parameters for each individual were recorded daily by herd managers. Results showed that the quartile of heifers with the lowest AMH concentration also had, on average, a shorter productive herd life (by 196 d), a reduced survival rate after birth of the first calf, the lowest level of milk production (first lactation), the lowest total percentage of cows pregnant (across all lactations), the highest culling rates (first and second lactations and overall), and the highest culling rate for poor reproduction (first lactation) compared with age-matched herdmates with higher AMH. We concluded that a single determination of AMH concentration in young adult dairy heifers may be a simple diagnostic method to predict herd longevity, and AMH may be a useful phenotypic marker to improve longevity of dairy cows
- …