1,367 research outputs found

    Design of a virtual sensor data array for the analysis of RDX, HMX and DMNB using metal-doped screen printed electrodes and chemometric analysis

    Get PDF
    The detection of explosive substances is a subject of high importance in several areas including environmental health, de-mining efforts (land and sea) and security and defence against terrorist activity. The use of electrochemical methods for the detection of these substances has increased in recent years but still is quite restricted to the most common explosives. The electrochemical detection of explosive nitroamines and taggant substances in solution using a virtual sensor array of metal-doped screen printed electrodes and differential pulse voltammetry was achieved. The multiple sets of voltammetric data from the different electrodic systems using Differential Pulse Voltammetry (DPV) were integrated using multivariate analysis (PCA, NIPALS and LDA) and matched with known substances present in explosives. These combinations created a mathematical array which separated the explosives, even if the electrochemical information is buried or mixed with the background noise. Two explosive substances: octogen (HMX- 1,3,5-Trinitroperhydro-1,3,5-triazine) and cyclonite (RDX- Hexahydro-1,3,5-trinitro-1,3,5-triazine) and a taggant agent 2,3-dimethyl-2,3-dinitrobutane (DMNB) were subjected to electrochemical analysis using a solid carbon- based screen printed electrode modified with silver, gold and platinum in aqueous solutions. Keywords

    Assessing strength and power in resistance training

    Get PDF
    Maximal Dynamic Strength is usually assessed either by the one repetition maximum test (1-RM) or by a repetition maximum test with submaximal loads, which requires the application of a formula to estimate the value of 1-RM. This value is needed to establish the objective of resistance training: such as maximum strength, endurance strength, and/or explosive strength. However, both 1-RM and submaximal tests are unable to highlight the changes produced on power and velocity. This manuscript summarizes and reviews several common strength testing protocols and proposes a novel approach that may offer greater insight to hierarchical muscle functionalit

    Chemometric study on the forensic discrimination of soil types using their infrared spectral characteristics

    Get PDF
    Soil has been utilized in criminal investigations for some time because of its prevalence and transferability. It is usually the physical characteristics that are studied, however the research carried out here aims to make use of the chemical profile of soil samples. The research we are presenting in this work used sieved (2mm) soil samples taken from the top soil layer (about 10cm) that were then analysed using mid infrared spectroscopy. The spectra obtained were pre-treated and then input into two chemometric classification tools: Nonlinear iterative partial least squares followed by linear discriminant analysis (NIPALS-LDA) and partial least squares discriminant analysis (PLS-DA). The models produced show that it is possible to discriminate between soil samples from different land use types and both approaches are comparable in performance. NIPALS-LDA performs much better than PLS-DA in classifying samples to locatio

    The forensic analysis of soil by FTIR with multivariate analysis

    Get PDF
    Over the past few years more and more studies have been carried out in an attempt to utilize chemical profiles of soil using a wide variety of analytical methods. The value of soil as evidence rests with its prevalence at crime scenes and its transferability between the scene and the criminal. This can be of value for comparison if the scene of crime is known, but could also be so in the identification of a scene. The main basis for the comparison of sites to determine provenance is that soils vary from one place to another. The aim of this work is to find simple methods to identify soil provenance based on FTIR and multivariate analysi

    Mark Sheasby

    Get PDF

    Space Station Freedom photovoltaic power module design status

    Get PDF
    Electric power generation for Space Station Freedom will be provided by four photovoltaic (PV) power modules using silicon solar cells during Phase 1 operation. Each PV power module requires two solar arrays with 32,800 solar cells generating 18.75 kW of dc power for a total of 75 kW. A portion of this power will be stored in nickel-hydrogen batteries for use during eclipse, and the balance will be processed and converted to 20 kHz ac power for distribution to end users through the power management and distribution system. The design incorporates an optimized thermal control system, pointing and tracking provision with the application of gimbals, and the use of orbital replacement units (ORU's) to achieve modularization. Design status of the PV power module, as derived from major trade studies, is discussed at hardware levels ranging from component to system. Details of the design are presented where appropriate

    Does whole body vibration have clinically significant neurophysiological and neurovascular implications?

    Get PDF
    Whole body vibration has received much attention as an innovative approach to exercise, leading to constantly increasing attention fro m the scientific community. Previous research considering occupational vibration has illustrated the risks associated with high levels of exposure to vibration; however during vibration exercise the exposure duration is much shorter and therefore the potential complications must be reconsidered. This review brings together research from various aspects of occupational vibration, clinical research and vibration exercise to address issues within the context of health and safety with a particular focus on neurophysiological and neurovascular responses. The results indicate that peripheral nerve and blood vessels are exposed to risks such as compression, shear stress and altered function as a response to vibration. However, correct planning and implementation of exercise protocols should effectively control these risks. By summarising the areas that have received attention an overview of potential complications will be achieved; with an understanding of which factors prevent participation and those that simply require an amended approach to vibration exercise

    Vessel noise affects routine swimming and escape response of a coral reef fish

    Get PDF
    An increasing number of studies have shown that anthropogenic noise can negatively affect aspects of the anti-predator behaviour of reef fishes, potentially affecting fitness and survival. However, it has been suggested that effects could differ among noise sources. The present study compared two common sources of anthropogenic noise and investigated its effects on behavioural traits critical for fish survival. In a tank-based experiment we examined the effects of noise from 4-stroke motorboats and ships (bulk carriers > 50,000 tonnes) on the routine swimming and escape response of a coral reef fish, the whitetail damselfish (Pomacentrus chrysurus). Both 4-stroke boat and ship noise playbacks affected the fast-start response and routine swimming of whitetail damselfish, however the magnitude of the effects differed. Fish exposed to ship noise moved shorter distances and responded more slowly (higher response latency) to the startle stimulus compared to individuals under the 4-stroke noise treatment. Our study suggests that 4-stroke and ship noise can affect activity and escape response of individuals to a simulated predation threat, potentially compromising their anti-predator behaviour

    Evaluating Bottom-Up and Top-Down Effects on Elk Survival and Recruitment: Year Two Update of a Case Study in the Bitterroot Valley

    Get PDF
    Understanding the contribution of recruitment to population growth rate in ungulates is a fundamental challenge to wildlife managers attempting to integrate carnivore and ungulate management. Like much of western Montana, in the Bitterroot Valley, the decline of elk (Cervus elaphus) populations and calf recruitment occurred concurrently with wolf (Canis lupus) recovery. However, a multitude of abiotic, bottom-up and top-down factors likely affect recruitment rates. We studied cause-specific mortality of elk calves to understand the role of competing mortality risk on calf recruitment in the East Fork and West Fork of the Bitterroot Valley, Montana. A total of 66 and 76 neonatal elk calves were captured in spring 2011 and 2012, respectively, and an additional 31 and 29 6-month-olds in late November 2011 and 2012. We analyzed calf survival using a Weibull parametric survival model, and cause-specific mortality using cumulative incidence functions. Preliminary analyses for the first 20 months of the research indicate mountain lions as the leading cause of mortality for elk calves during both summer and winter. We are also evaluating the role of summer forage resources on maternal condition, calf birth weights and survival. Preliminary results from nutritional work suggest potential bottom-up differences influencing resilience of elk populations to top-down predation. Our study fills a critical knowledge gap regarding the role of summer vs winter mortality in elk and the role of nutrition. The study will complement previous studies and help wildlife managers integrate carnivore and ungulate management across western Montana following carnivore recovery

    Activated Carbon, Carbon Nanofiber and Carbon Nanotube Supported Molybdenum Carbide Catalysts for the Hydrodeoxygenation of Guaiacol

    Get PDF
    Molybdenum carbide was supported on three types of carbon support—activated carbon; multi-walled carbon nanotubes; and carbon nanofibers—using ammonium molybdate and molybdic acid as Mo precursors. The use of activated carbon as support afforded an X-ray amorphous Mo phase, whereas crystalline molybdenum carbide phases were obtained on carbon nanofibers and, in some cases, on carbon nanotubes. When the resulting catalysts were tested in the hydrodeoxygenation (HDO) of guaiacol in dodecane, catechol and phenol were obtained as the main products, although in some instances significant amounts of cyclohexane were produced. The observation of catechol in all reaction mixtures suggests that guaiacol was converted into phenol via sequential demethylation and HDO, although the simultaneous occurrence of a direct demethoxylation pathway cannot be discounted. Catalysts based on carbon nanofibers generally afforded the highest yields of phenol; notably, the only crystalline phase detected in these samples was Mo2C or Mo2C-ζ, suggesting that crystalline Mo2C is particularly selective to phenol. At 350 °C, carbon nanofiber supported Mo2C afforded near quantitative guaiacol conversion, the selectivity to phenol approaching 50%. When guaiacol HDO was performed in the presence of acetic acid and furfural, guaiacol conversion decreased, although the selectivity to both catechol and phenol was increased
    • …
    corecore