17,088 research outputs found

    X.509 certificate error testing

    Get PDF
    X.509 Certificates are used by a wide range of technologies to verify identities, while the SSL protocol is used to provide a secure encrypted tunnel through which data can be sent over a public network. Combined both of these technologies provides the basis of the public key infrastructure (PKI). While the concept of PKI is a good idea, the different implementation of the technologies in different operating system and clients often lead to weaknesses. This paper proposes a methodology to automate the testing of SSL clients by generating both bogus and malformed certificates in order to evaluate the client’s response and identify potential threats to network infrastructures

    Radiatively Generated Isospin Violations in the Nucleon and the NuTeV Anomaly

    Full text link
    Predictions of isospin asymmetries of valence and sea distributions are presented which are generated by QED leading O(α){\cal{O}}(\alpha) photon bremsstrahlung effects. Together with isospin violations arising from nonperturbative hadronic sources (such as quark and target mass differences) as well as with even a conservative contribution from a strangeness asymmetry (s≠sˉs\neq \bar{s}), the discrepancy between the large NuTeV `anomaly' result for sin⁥2ΞW\sin^2\theta_W and the world average of other measurements is removed.Comment: 10 pages, 2 figure

    Encoding algebraic power series

    Full text link
    Algebraic power series are formal power series which satisfy a univariate polynomial equation over the polynomial ring in n variables. This relation determines the series only up to conjugacy. Via the Artin-Mazur theorem and the implicit function theorem it is possible to describe algebraic series completely by a vector of polynomials in n+p variables. This vector will be the code of the series. In the paper, it is then shown how to manipulate algebraic series through their code. In particular, the Weierstrass division and the Grauert-Hironaka-Galligo division will be performed on the level of codes, thus providing a finite algorithm to compute the quotients and the remainder of the division.Comment: 35 page

    Dynamical NNLO parton distributions

    Full text link
    Utilizing recent DIS measurements (\sigma_r, F_{2,3,L}) and data on hadronic dilepton production we determine at NNLO (3-loop) of QCD the dynamical parton distributions of the nucleon generated radiatively from valencelike positive input distributions at an optimally chosen low resolution scale (Q_0^2 < 1 GeV^2). These are compared with `standard' NNLO distributions generated from positive input distributions at some fixed and higher resolution scale (Q_0^2 > 1 GeV^2). Although the NNLO corrections imply in both approaches an improved value of \chi^2, typically \chi^2_{NNLO} \simeq 0.9 \chi^2_{NLO}, present DIS data are still not sufficiently accurate to distinguish between NLO results and the minute NNLO effects of a few percent, despite of the fact that the dynamical NNLO uncertainties are somewhat smaller than the NLO ones and both are, as expected, smaller than those of their `standard' counterparts. The dynamical predictions for F_L(x,Q^2) become perturbatively stable already at Q^2 = 2-3 GeV^2 where precision measurements could even delineate NNLO effects in the very small-x region. This is in contrast to the common `standard' approach but NNLO/NLO differences are here less distinguishable due to the much larger 1\sigma uncertainty bands. Within the dynamical approach we obtain \alpha_s(M_Z^2)=0.1124 \pm 0.0020, whereas the somewhat less constrained `standard' fit gives \alpha_s(M_Z^2)=0.1158 \pm 0.0035.Comment: 44 pages, 15 figures; minor changes, footnote adde

    The XMM-Newton view of PG quasars: II. Properties of the Fe K-alpha line

    Full text link
    The properties of the fluorescence Fe K-alpha emission lines of a sample of 38 quasars (QSOs) observed with XMM-Newton are studied. These objects are included in the optically selected sample from the Palomar-Green (PG) Bright Quasar Survey with an X-ray luminosity 1.3E43<L(2-10 keV)<5.1E45 ergs/s and z<1.72. For each object in the sample, we investigated the presence of both narrow and broad iron lines in detail. A total of 20 out of the 38 QSOs show evidence of an Fe K-alpha emission line with a narrow profile. The majority of the lines are consistent with an origin in low ionization material, which is likely to be located in the outer parts of the accretion disk, the molecular torus, and/or the Broad Line Region. The average properties of the narrow Fe K-alpha emission line observed in the sample are similar to those of Seyfert type galaxies as inferred from recent XMM-Newton and Chandra studies. A broad line has been significantly detected in only three objects. Furthermore, we studied the relationship between the equivalent width (EW) of the iron line and the hard band X-ray luminosity for radio quiet quasars. The analysis indicates that no clear correlation between the strength of the line and the hard X-ray luminosity is present, and our results do not show compelling evidence for an anticorrelation between these two quantities, i.e. the so-called X-ray Baldwin effect.Comment: 10 pages, 3 figures, accepted by A&

    XMM-Newton view of the double-peaked Fe K-alpha complex in E1821+643

    Full text link
    We present the results of the analysis of the hard band XMM-Newton spectra of the luminous, L(2-10keV)~3.4E+45 erg/s, radio-quiet quasar, E1821+643. Two emission features were observed in the 6-7 keV rest frame band, confirming previous Chandra detection of these structures. We interpret these features as two single emission lines, one consistent with the neutral Fe K-alpha line at 6.4 keV and the other most likely due to FeXXVI. If related to the quasar, the high-energy emission line should originate in highly ionised matter, i.e. the accretion disc or the clouds of the emission line regions. Alternatively, it may be related to the intergalactic medium of the rich galaxy cluster in which E1821+643 is embedded. A composite broad emission line in combination with an absorption line model, however, also fits the data well. We discuss the possible physical interpretations of the origin of these features.Comment: Accepted for publication in A&A, 7 pages and 7 figure
    • 

    corecore