9 research outputs found

    First search for long-duration transient gravitational waves after glitches in the Vela and Crab pulsars

    Get PDF
    Gravitational waves (GWs) can offer a novel window into the structure and dynamics of neutron stars. Here we present the first search for long-duration quasi-monochromatic GW transients triggered by pulsar glitches. We focus on two glitches observed in radio timing of the Vela pulsar (PSR J0835-4510) on 12 December 2016 and the Crab pulsar (PSR J0534+2200) on 27 March 2017, during the Advanced LIGO second observing run (O2). We assume the GW frequency lies within a narrow band around twice the spin frequency as known from radio observatons. Using the fully-coherent transient-enabled F-statistic method to search for transients of up to four months in length. We find no credible GW candidates for either target, and through simulated signal injections we set 90% upper limits on (constant) GW strain as a function of transient duration. For the larger Vela glitch, we come close to beating an indirect upper limit for when the total energy liberated in the glitch would be emitted as GWs, thus demonstrating that similar post-glitch searches at improved detector sensitivity can soon yield physical constraints on glitch models.Comment: 10 pages, 3 figures (incl. appendices). Updated to match version accepted by PRD and fixed a few reference

    The C.elegans ric-3 gene is required for maturation of nicotinic acetylcholine receptors

    No full text
    Mutations in ric-3 (resistant to inhibitors of cholinesterase) suppress the neuronal degenerations caused by a gain of function mutation in the Caenorhabditis elegans DEG-3 acetylcholine receptor. RIC-3 is a novel protein with two transmembrane domains and extensive coiled-coil domains. It is expressed in both muscles and neurons, and the protein is concentrated within the cell bodies. We demonstrate that RIC-3 is required for the function of at least four nicotinic acetylcholine receptors. However, GABA and glutamate receptors expressed in the same cells are unaffected. In ric-3 mutants, the DEG-3 receptor accumulates in the cell body instead of in the cell processes. Moreover, co-expression of ric-3 in Xenopus laevis oocytes enhances the activity of the C.elegans DEG-3/DES-2 and of the rat α-7 acetylcholine receptors. Together, these data suggest that RIC-3 is specifically required for the maturation of acetylcholine receptors

    First search for long-duration transient gravitational waves after glitches in the Vela and Crab pulsars

    No full text
    [eng] Gravitational waves (GWs) can offer a novel window into the structure and dynamics of neutron stars. Here we present the first search for long-duration quasimonochromatic GW transients triggered by pulsar glitches. We focus on two glitches observed in radio timing of the Vela pulsar (PSR J0835-4510) on 12 December 2016 and the Crab pulsar (PSR J0534+2200) on 27 March 2017, during the Advanced LIGO second observing run (O2). We assume the GW frequency lies within a narrow band around twice the spin frequency as known from radio observations. Using the fully-coherent transient-enabled F-statistic method, we search for transients of up to four months in length. We find no credible GW candidates for either target, and through simulated signal injections we set 90% upper limits on (constant) GW strain as a function of transient duration. For the larger Vela glitch, we come close to beating an indirect upper limit for when the total energy liberated in the glitch would be emitted as GWs, thus demonstrating that similar postglitch searches at improved detector sensitivity can soon yield physical constraints on glitch models

    Search for gravitational wave signals from known pulsars in LIGO-Virgo O3 data using the 5n-vector ensemble method

    Get PDF
    International audienceThe 5n-vector ensemble method is a multiple test for the targeted search of continuous gravitational waves from an ensemble of known pulsars. This method can improve the detection probability combining the results from individually undetectable pulsars if few signals are near the detection threshold. In this paper, we apply the 5n-vector ensemble method to the O3 data set from the LIGO and Virgo detectors considering an ensemble of 201 known pulsars. We find no evidence for a signal from the ensemble and set a 95% credible upper limit on the mean ellipticity assuming a common exponential distribution for the pulsars' ellipticities. Using two independent hierarchical Bayesian procedures, we find upper limits of 1.2×10−91.2 \times 10^{-9} and 2.5×10−92.5 \times 10^{-9} on the mean ellipticity for the 201 analyzed pulsars
    corecore