14 research outputs found

    Breakthrough bloodstream infections caused by echinocandin-resistant candida tropicalis: An emerging threat to immunocompromised patients with hematological malignancies

    No full text
    Background. Candida tropicalis is a virulent fungal pathogen for which echinocandins are the primary therapy. Emergence of resistance to echinocandins of C. tropicalis carries potentially ominous therapeutic implications. Methods. We describe herein two patients with breakthrough C. tropicalis fungemia during echinocandin therapy, characterize their molecular mechanism of resistance, and systematically review 13 previously reported cases of echinocandin-resistant C. tropicalis bloodstream infections (BSIs) and other diseases. Results. Among these 15 patients with echinocandin-resistant C. tropicalis infections, the median age was 61 years (ages 28–84 years) and 13 (86%) were immunocompromised. Thirteen (86%) of all patients had a history of pervious or concurrent exposure to echinocandins. Isolates of C. tropicalis from 11 cases, including the two index cases, underwent DNA sequencing of the FKS1 gene for mutations known to confer echinocandin resistance. The amino acid substitution Ser654Pro was shown in four cases, while other FKS1 mutations encoded Ser80S/Pro, Phe641Leu, Phe641Ser, Ser80S/Pro substitutions. These mutational events were not associated with collateral increases in minimum inhibitory concentrations to antifungal triazoles and amphotericin B. Overall mortality in patients with echinocandin-resistant C. tropicalis infections was 40%. Among those six patients who died, two received monotherapy with voriconazole, one was treated with fluconazole, one remained on caspofungin, and two were switched to liposomal amphotericin B. Nine patients (60%) survived after being treated with an antifungal agent other than an echinocandin. Conclusions. Emergence of resistance to echinocandins by C. tropicalis, occurs during antifungal therapy, is associated with high mortality, is mediated by a diverse range of FKS1 mutations, retains in vitro susceptibility to triazoles and amphotericin B, and constitutes an emerging threat to patients with hematological malignancies. © 2020 by the authors. Licensee MDPI, Basel, Switzerland

    Comparative study of Candida spp. isolates: Identification and echinocandin susceptibility in isolates obtained from blood cultures in 15 hospitals in MedellĂ­n, Colombia

    No full text
    Objectives: Invasive candidiasis has a high impact on morbidity and mortality in hospitalised patients. Accurate and timely methods for identification of Candida spp. and determination of echinocandin susceptibility have become a priority for clinical microbiology laboratories. Methods: This study was performed to compare matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF/MS) identification with sequencing of the D1/D2 region of the rRNA gene complex 28 subunit in 147 Candida spp. isolates obtained from patients with candidaemia. Antimicrobial susceptibility testing was performed by broth microdilution (BMD) and Etest. Sequencing of the FKS1 and FKS2 genes was performed. Results: The most common species isolated were Candida albicans (40.8%), followed by Candida parapsilosis (23.1%) and Candida tropicalis (17.0%). Overall agreement between the results of identification by MALDI-TOF/MS and molecular identification was 99.3%. Anidulafungin and caspofungin susceptibility by the BMD method was 98.0% and 88.4%, respectively. Susceptibility to anidulafungin and caspofungin by Etest was 93.9% and 98.6%, respectively. Categorical agreement between Etest and BMD was 91.8% for anidulafungin and 89.8% for caspofungin, with lower agreements in C. parapsilosis for anidulafungin (76.5%) and C. glabrata for caspofungin (40.0%). No mutations related to resistance were found in the FKS genes, although 54 isolates presented synonymous polymorphisms in the hotspots sequenced. Conclusions: MALDI-TOF/MS is a good alternative for routine identification of Candida spp. isolates. DNA sequencing of the FKS genes suggested that the isolates analysed were susceptible to echinocandins; alternatively, unknown resistance mechanisms or limitations related to antifungal susceptibility tests may explain the resistance found in a few isolates. © 2017 International Society for Chemotherapy of Infection and Cance

    Comparative study of Candida spp. isolates: Identification and echinocandin susceptibility in isolates obtained from blood cultures in 15 hospitals in MedellĂ­n, Colombia

    No full text
    Objectives: Invasive candidiasis has a high impact on morbidity and mortality in hospitalised patients. Accurate and timely methods for identification of Candida spp. and determination of echinocandin susceptibility have become a priority for clinical microbiology laboratories. Methods: This study was performed to compare matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF/MS) identification with sequencing of the D1/D2 region of the rRNA gene complex 28 subunit in 147 Candida spp. isolates obtained from patients with candidaemia. Antimicrobial susceptibility testing was performed by broth microdilution (BMD) and Etest. Sequencing of the FKS1 and FKS2 genes was performed. Results: The most common species isolated were Candida albicans (40.8%), followed by Candida parapsilosis (23.1%) and Candida tropicalis (17.0%). Overall agreement between the results of identification by MALDI-TOF/MS and molecular identification was 99.3%. Anidulafungin and caspofungin susceptibility by the BMD method was 98.0% and 88.4%, respectively. Susceptibility to anidulafungin and caspofungin by Etest was 93.9% and 98.6%, respectively. Categorical agreement between Etest and BMD was 91.8% for anidulafungin and 89.8% for caspofungin, with lower agreements in C. parapsilosis for anidulafungin (76.5%) and C. glabrata for caspofungin (40.0%). No mutations related to resistance were found in the FKS genes, although 54 isolates presented synonymous polymorphisms in the hotspots sequenced. Conclusions: MALDI-TOF/MS is a good alternative for routine identification of Candida spp. isolates. DNA sequencing of the FKS genes suggested that the isolates analysed were susceptible to echinocandins; alternatively, unknown resistance mechanisms or limitations related to antifungal susceptibility tests may explain the resistance found in a few isolates. © 2017 International Society for Chemotherapy of Infection and Cance

    Splicing events in the control of genome integrity: role of SLU7 and truncated SRSF3 proteins

    No full text
    Genome instability is related to disease development and carcinogenesis. DNA lesions are caused by genotoxic compounds but also by the dysregulation of fundamental processes like transcription, DNA replication and mitosis. Recent evidence indicates that impaired expression of RNA-binding proteins results in mitotic aberrations and the formation of transcription-associated RNA–DNA hybrids (R-loops), events strongly associated with DNA injury. We identify the splicing regulator SLU7 as a key mediator of genome stability. SLU7 knockdown results in R-loops formation, DNA damage, cell-cycle arrest and severe mitotic derangements with loss of sister chromatid cohesion (SCC). We define a molecular pathway through which SLU7 keeps in check the generation of truncated forms of the splicing factor SRSF3 (SRp20) (SRSF3-TR). Behaving as dominant negative, or by gain-of-function, SRSF3-TR impair the correct splicing and expression of the splicing regulator SRSF1 (ASF/SF2) and the crucial SCC protein sororin. This unique function of SLU7 was found in cancer cells of different tissue origin and also in the normal mouse liver, demonstrating a conserved and fundamental role of SLU7 in the preservation of genome integrity. Therefore, the dowregulation of SLU7 and the alterations of this pathway that we observe in the cirrhotic liver could be involved in the process of hepatocarcinogenesis

    Splicing events in the control of genome integrity: role of SLU7 and truncated SRSF3 proteins

    No full text
    Genome instability is related to disease development and carcinogenesis. DNA lesions are caused by genotoxic compounds but also by the dysregulation of fundamental processes like transcription, DNA replication and mitosis. Recent evidence indicates that impaired expression of RNA-binding proteins results in mitotic aberrations and the formation of transcription-associated RNA–DNA hybrids (R-loops), events strongly associated with DNA injury. We identify the splicing regulator SLU7 as a key mediator of genome stability. SLU7 knockdown results in R-loops formation, DNA damage, cell-cycle arrest and severe mitotic derangements with loss of sister chromatid cohesion (SCC). We define a molecular pathway through which SLU7 keeps in check the generation of truncated forms of the splicing factor SRSF3 (SRp20) (SRSF3-TR). Behaving as dominant negative, or by gain-of-function, SRSF3-TR impair the correct splicing and expression of the splicing regulator SRSF1 (ASF/SF2) and the crucial SCC protein sororin. This unique function of SLU7 was found in cancer cells of different tissue origin and also in the normal mouse liver, demonstrating a conserved and fundamental role of SLU7 in the preservation of genome integrity. Therefore, the dowregulation of SLU7 and the alterations of this pathway that we observe in the cirrhotic liver could be involved in the process of hepatocarcinogenesis

    Splicing events in the control of genome integrity: role of SLU7 and truncated SRSF3 proteins

    Get PDF
    Genome instability is related to disease development and carcinogenesis. DNA lesions are caused by genotoxic compounds but also by the dysregulation of fundamental processes like transcription, DNA replication and mitosis. Recent evidence indicates that impaired expression of RNA-binding proteins results in mitotic aberrations and the formation of transcription-associated RNA–DNA hybrids (R-loops), events strongly associated with DNA injury. We identify the splicing regulator SLU7 as a key mediator of genome stability. SLU7 knockdown results in R-loops formation, DNA damage, cell-cycle arrest and severe mitotic derangements with loss of sister chromatid cohesion (SCC). We define a molecular pathway through which SLU7 keeps in check the generation of truncated forms of the splicing factor SRSF3 (SRp20) (SRSF3-TR). Behaving as dominant negative, or by gain-of-function, SRSF3-TR impair the correct splicing and expression of the splicing regulator SRSF1 (ASF/SF2) and the crucial SCC protein sororin. This unique function of SLU7 was found in cancer cells of different tissue origin and also in the normal mouse liver, demonstrating a conserved and fundamental role of SLU7 in the preservation of genome integrity. Therefore, the dowregulation of SLU7 and the alterations of this pathway that we observe in the cirrhotic liver could be involved in the process of hepatocarcinogenesis
    corecore