69 research outputs found
Two-photon finite-pulse model for resonant transitions in attosecond experiments
We present an analytical model capable of describing two-photon ionization of
atoms with attosecond pulses in the presence of intermediate and final isolated
autoionizing states. The model is based on the finite-pulse formulation of
second-order time-dependent perturbation theory. It approximates the
intermediate and final states with Fano's theory for resonant continua, and it
depends on a small set of atomic parameters that can either be obtained from
separate \emph{ab initio} calculations, or be extracted from few selected
experiments. We use the model to compute the two-photon resonant photoelectron
spectrum of helium below the N=2 threshold for the RABITT (Reconstruction of
Attosecond Beating by Interference of Two-photon Transitions) pump-probe
scheme, in which an XUV attosecond pulse train is used in association to a weak
IR probe, obtaining results in quantitative agreement with those from accurate
\emph{ab initio} simulations. In particular, we show that: i) Use of finite
pulses results in a homogeneous red shift of the RABITT beating frequency, as
well as a resonant modulation of the beating frequency in proximity of
intermediate autoionizing states; ii) The phase of resonant two-photon
amplitudes generally experiences a continuous excursion as a function of the
intermediate detuning, with either zero or overall variation.Comment: 23 pages, 13 figure
Attosecond spectroscopy of autoionizing states
Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Química. Fecha de lectura: 15-12-2015In this PhD Thesis we report a theoretical time-resolved study of the effects of
electron correlation in the single photoionization spectrum of atomic systems,
with particular focus on multi-photon transitions occurring in the presence of
autoionizing states. For this task, we take two complementary approaches. On
the one hand, we solve ab initio the time dependent Schrödinger equation in a
virtually exact way for the helium atom. Helium is a hallmark system for electron
correlation studies, and will be our target in the majority of this work. The results
obtained, however, are general and apply to many-electron systems. On the other
hand, we derive simplified models, which allow to gain physical insight on the
phenomenology observed and to extend our theoretical predictions on helium
to larger systems. The models are benchmarked against the ab initio solution
yielding results in excellent agreement.
We explore electron dynamics by means of two novel attosecond pump-probe
techniques: reconstruction of attosecond beating by interference of two-photon
transitions and attosecond transient absorption spectroscopy.
First, by using a weak probe field, we study two-photon transitions resonant
with the doubly-excited autoionizing states embedded in the single-channel
single-ionization continuum of helium. Using the reconstruction of attosecond
beating by interference of two-photon transitions technique, we access both the
amplitude and phase of the transitions, which permits us to extract the dynamical
properties of the doubly-excited wave packet. Excellent agreement is found by
comparing an experimentally reconstructed meta-stable wave packet with that reconstructed
from theory. The predictions of our model are then applied to experiments
performed in the multi-channel continuum of the argon atom, confirming
that the extension of the model to larger systems works.
Second, we investigate the effects of varying the probe field intensity on
the phases and positions of doubly-excited states in helium. By looking at the
intensity-dependent phase of doubly-excited states in the attosecond transient
absorption spectrum, we show that the ac-Stark shift higher terms in the doublyexcited
series exceeds the ponderomotive energy. This circumstance indicates that
the concurrent motion of the two correlated electrons plays a crucial role in the
response of the electron wave packet to the driving laser field at relatively high
intensities. By photoionizing selected doubly-excited states, we see that the shift
of the photoelectron signal depends on both the final ionization channel and the
series to which the doubly-excited state belongs.
Finally, in the non-resonant region, we explore angularly-resolved two-photon
transitions. We discuss quantitatively that, when measuring photo-ejection time
delays, the measurement process induces a universal anisotropy. At variance
with hydrogen, in helium the polarizable parent ion has a noticeable effect on
the observed time delay anisotropy, which points out the potential of angularlyresolved
time delay measurements to investigate multi-electron effectsEn esta Tesis presentamos un estudio teórico de los efectos de correlación electrónica
resueltos temporalmente en el espectro de ionización simple de sistemas
atómicos, con particular atención a las transiciones multifotónicas que ocurren
en presencia de estados autoionizantes. Para ello, hemos tomado dos enfoques
complementarios. Por un lado, resolvemos de manera ab initio la ecuación de
Schrödinger dependiente del tiempo de manera virtualmente exacta para el
átomo de helio. El átomo de helio es un candidato perfecto para estudios de
correlación electrónica, y lo usaremos como principal objeto de nuestro estudio.
Los resultados obtenidos, no obstante, son generales y aplicables a átomos de
más electrones. Por otro lado, hemos derivado modelos analíticos, que permiten
obtener una comprensión más profunda de la fenomenología observada y extender
las predicciones teóricas para el átomo de helio a sistemas más grandes.
Los modelos son comparados con la solución ab initio obteniéndose un acuerdo
excelente.
Exploramos la dinámica electrónica por medio de dos técnicas pump-probe: reconstrucción
de la oscilación de attosegundos por medio de la interferencia de
transiciones a dos fotones (RABITT , por sus siglas en inglés) y espectroscopía de
absorción transitoria de attosegundos (ATAS, por sus siglas en inglés).
Primero, usando un láser de intensidad débil, estudiamos transiciones de dos
fotones resonantes con los estados doblemente excitados que se encuentran contenidos
en el continuo de ionización simple del helio. Usando la técnica de RABITT
, accedemos a las amplitudes y las fases de las transiciones, lo que nos permite
extraer las propiedades dinámicas del paquete de ondas doblemente excitado.
Comparando el paquete de ondas metaestable reconstruido experimentalmente
con el predicho por la teoría, encontramos un acuerdo excelente. Posteriormente
aplicamos las predicciones de nuestro modelo a experimentos realizados en el
continuo multi-canal del átomo de argon, confirmando que la extensión de nuestro
modelo a sistemas más grandes funciona.
Segundo, investigamos los efectos que produce la variación de la intensidad
del láser en las fases y posiciones de los estados doblemente excitados del helio.
Mirando a la fase de los estados doblemente excitados en el espectro de
ATAS, mostramos que el desplazamiento ac-Stark para los órdenes más altos de
la serie de estados doblemente excitados excede la energía ponderomotriz. Esta
circunstancia indica que el movimiento correlacionado de dos electrones juega
un papel crucial en la respuesta del paquete de ondas electrónico al campo láser
para intensidades relativamente altas. Mediante la fotoionización a partir estados
doblemente excitados, encontramos que el desplazamiento de la señal fotoelectrónica
depende tanto del canal del continuo final de ionización como de la serie
autoionizante a la que el estado doblemente excitado pertenece.
vii
Por último, en la región no resonante, exploramos transiciones a dos fotones
resueltas angularmente. Mostramos de manera cuantitativa que en el proceso de
medición de los tiempos de fotoemisión, se induce una anisotropía universal. A
diferencia del átomo de hidrógeno, en el helio la polarizabilidad del ión padre
tiene un efecto notable en la anisotropía observada, lo que pone de manifiesto el
potencial de usar mediciones del tiempo de fotoemisión resueltas angularmente
para investigar efectos multi-electrónico
The soft-photon approximation in infrared-laser-assisted atomic ionization by extreme-ultraviolet attosecond-pulse trains
We use the soft-photon approximation, formulated for finite pulses,
to investigate the effects of the dressing pulse duration and intensity on simulated
attosecond pump–probe experiments employing trains of attosecond extremeultraviolet
pulses in conjunction with an IR probe pulse.We illustrate the validity
of the approximation by comparing the modelled photoelectron distributions for
the helium atom, in the photon energy region close to the N = 2 threshold, to
the results from the direct solution of the time-dependent Schr¨odinger equation
for two active electrons. Even in the presence of autoionizing states, the
model accurately reproduces most of the background features of the ab initio
photoelectron spectrum in the 1s channel. A splitting of the photoelectron
harmonic signal along the polarization axis, in particular, is attributed to the
finite duration of the probe pulse. Furthermore, we study the dependence of the
sideband integrated signal on the pump–probe time delay for increasing IR field
strengths. Starting at IR intensities of the order of 1TWcm−2, overtones in the
sideband oscillations due to the exchange of three or more IR photons start to
appear. We derive an analytical expression in the frequency-comb limit of the soft-photon model for the amplitude of all the sideband frequency components
and show that these amplitudes oscillate as a function of the intensity of the IR
field. In particular, we predict that the amplitude of the fundamental component
with frequency 2!IR, on which the rabitt optical reconstruction technique is
based, changes sign periodicallyWe thank Mare Nostrum BSC and CCC-UAM (Centro de Computación Científica,
Universidad Autónoma de Madrid) for allocation of computer time. The research leading
to these results has received funding from the European Research Council under the
European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement
number 290853, the European COST Actions CM0702 and CM1204, the ERA-Chemistry
project number PIM2010EEC-00751, the Marie Curie ITN CORINF and the MICINN projects
numbers FIS2010-15127 and CSD 2007-00010 (Spain
Reconstruction of attosecond beating by interference of two-photon transitions in bulk solids
The reconstruction of attosecond beating by interference of two-photon
transitions (RABBIT) is one of the most widely used techniques for resolving
ultrafast electronic dynamics in atomic and molecular systems. As it relies on
the interference of photo-electrons in vacuum, similar interference has never
been contemplated in the bulk of crystals. Here we show that the interference
of two-photon transitions can be recorded directly in the bulk of solids and
read out with standard angle-resolved photo-emission spectroscopy. The phase of
the RABBIT beating in the photoelectron spectra coming from the bulk of solids
is sensitive to the relative phase of the Berry connection between bands and it
experiences a shift of as one of the quantum paths crosses a band. For
resonant interband transitions, the amplitude of the RABBIT oscillation decays
as the pump and probe pulses are separated in time due to electronic
decoherence, providing a simple interferometric method to extract dephasing
times
All-optical valley switch and clock of electronic dephasing
2D materials with broken inversion symmetry posses an extra degree of
freedom, the valley pseudospin, that labels in which of the two
energy-degenerate crystal momenta, or , the conducting carriers are
located. It has been shown that shining circularly-polarized light allows to
achieve close to 100% of valley polarization, opening the way to valley-based
transistors. Yet, switching of the valley polarization is still a key challenge
for the practical implementation of such devices due to the short coherence
lifetimes. Recent progress in ultrashort laser technology now allows to produce
trains of attosecond pulses with controlled phase and polarization between the
pulses. Taking advantage of such technology, we introduce a coherent control
protocol to turn on, off and switch the valley polarization at faster
timescales than electronic and valley decoherence, that is, an ultrafast
optical valley switch. We theoretically demonstrate the protocol for hBN and
MoS monolayers calculated from first principles. Additionally, using two
time-delayed linearly-polarized pulses with perpendicular polarization, we show
that we can extract the electronic dephasing time from the valley Hall
conductivity.Comment: 19 pages; 4 figure
Sub-cycle valleytronics: control of valley polarization using few-cycle linearly polarized pulses
So far, selective excitation of a desired valley in the Brillouin zone of a
hexagonal two-dimensional material has relied on using circularly polarized
fields. We theoretically demonstrate a way to induce, control, and read valley
polarization in hexagonal 2D materials on a few-femtosecond timescale using a
few-cycle, linearly polarized pulse with controlled carrier-envelope phase. The
valley pseudospin is encoded in the helicity of the emitted high harmonics of
the driving pulse, allowing one to avoid additional probe pulses and permitting
one to induce, manipulate and read the valley pseudospin all-optically, in one
step. High circularity of the harmonic emission offers a method to generate
highly elliptic attosecond pulses with a linearly polarized driver, in an
all-solid-state setup
Recommended from our members
Sub-cycle valleytronics: control of valley polarization using few-cycle linearly polarized pulses
So far, it has been assumed that selective excitation of a desired valley in the Brillouin zone of a hexagonal two-dimensional material has to rely on using circularly polarized fields. We theoretically demonstrate a way to control the valley excitation in hexagonal 2D materials on a few-femtosecond timescale using a few-cycle, linearly polarized pulse with controlled carrier–envelope phase. The valley polarization is mapped onto the strength of the perpendicular harmonic signal of a weak, linearly polarized pulse, which allows to read this information all-optically without destroying the valley state and without relying on the Berry curvature, making our approach potentially applicable to inversion-symmetric materials. We show applicability of this method to hexagonal boron nitride and MoS2
Ultrafast dephasing in solid state high harmonic generation: macroscopic origin revealed by real-space dynamics
Using a fully real-space perspective on high harmonic generation (HHG) in
solids, we examine the relationship between microscopic response, macroscopic
propagation of this response to the far field, and the extremely short
dephasing times routinely used in the theoretical simulations of experimentally
measured solid-state HHG spectra. We find that far field propagation naturally
reduces the contribution to the observed HHG emission from electrons that do
not return to the lattice site where they have been injected into the
conduction band. We then show that extremely short dephasing times routinely
used in microscopic simulations suppress many electron trajectories that
contribute to the far-field spectra, leading to significant distortions of the
true high harmonic response. We show that a real-space based dephasing
mechanism, which preferentially suppresses trajectories which veer too far away
from their original lattice site, yield HHG spectra that faithfully retain
those trajectories that contribute to the far-field spectra while filtering out
those which do not, already at the microscopic level. Our findings emphasize
the similarities between atomic and solid-state HHG by highlighting the
importance of the intensity-dependent phase of HHG emission and address the
longstanding issue regarding the origin of extremely short dephasing times in
solid-state HHG.Comment: 8 pages, 3 figure
- …