9 research outputs found

    Highly Diastereoselective Multicomponent Synthesis of Spirocyclopropyl Oxindoles Enabled by Rare-Earth Metal Salts

    Get PDF
    The synthesis of polysubstituted spirocyclopropyl oxindoles using a series of rare-earth metal (REM) salts is reported. REMs, in particular Sc(OTf)3, allowed access to the target compounds by a multicomponent reaction with high diastereoselectivity (≀94:6:0:0). Density functional theory calculations on the model reaction are consistent with the observed selectivity and revealed that the special coordinating capabilities and the oxophilicity of the metal are key factors in inducing the formation of one main diastereoisomer.The authors thank Diana Cabrera, Sebastiaan van Liempd, and Juan M. Falcon-Perez from the CIC bioGUNE Metabolomics Platform for performing the UPLC-MS/MS analyses. The authors also acknowledge the Italian Ministry of University and Research (MUR) for Project SI.F.I.PA.CRO.DE. - Sviluppo e industrializzazione farmaci innovativi per terapia molecolare personalizzata PA.CRO.DE. (PON ARS01_00568, CUP: B29C20000360005) and for two doctoral grants. Moreover, the authors thank the University of Calabria and Calabria Region (PAC CALABRIA 2014–2020-Asse Prioritario 12, Azione B 10.5.12 CUP: H28D19000040006) for financial support. This research was also funded by MCIN/AEI/10.13039/501100011033 (Grant PID2021-125946OB-I00 to G.J.-O. and Severo Ochoa Excellence Accreditation CEX2021-001136-S to CIC bioGUNE)

    Molecular Recognition of Glycan-Bearing Glycomacromolecules Presented at Membrane Surfaces by Lectins: An NMR View

    Get PDF
    Lectin–glycan interactions are at the heart of a multitude of biological events. Glycans are usually presented in a multivalent manner on the cell surface as part of the so-called glycocalyx, where they interact with other entities. This multivalent presentation allows us to overcome the typical low affinities found for individual glycan–lectin interactions. Indeed, the presentation of glycans may drastically impact their binding by lectins, highly affecting the corresponding binding affinity and even selectivity. In this context, we herein present the study of the interaction of a variety of homo- and heteromultivalent lactose-functionalized glycomacromolecules and their lipid conjugates with two human galectins. We have employed as ligands the glycomacromolecules, as well as liposomes decorated with those structures, to evaluate their interactions in a cell-mimicking environment. Key details of the interaction have been unravelled by NMR experiments, both from the ligand and receptor perspectives, complemented by cryo-electron microscopy methods and molecular dynamics simulations.M.H. and L.H. thank the DFG for support through the ViroCarb research consortium (HA5950/5-2) and the CeMSA@HHU (Center for Molecular and Structural Analytics @ Heinrich-Heine University) for recording the mass spectrometric and the NMR-spectroscopic data for the structural conformation of the glycomacromolecules and their lipid conjugates. The CIC bioGUNE EM platform is also thanked for infrastructural support during cryo-EM data collection. The group in Spain thank the European Research Council (RECGLYCANMR, Advanced grant no. 788143), MCIN/AEI/10.13039/501100011033 for grants PDI2021-1237810B-C21, PID2021-126130OB-I00, CEX2021-001136-S, and CIBERES, an initiative of Instituto de Salud Carlos III (ISCIII), Madrid, Spain, for generous funding

    Structures of the Inhibitory Receptor Siglec-8 in Complex with a High-Affinity Sialoside Analogue and a Therapeutic Antibody

    Get PDF
    Human sialic acid binding immunoglobulin-like lectin-8 (Siglec-8) is an inhibitory receptor that triggers eosinophil apoptosis and can inhibit mast cell degranulation when engaged by specific monoclonal antibodies (mAbs) or sialylated ligands. Thus, Siglec-8 has emerged as a critical negative regulator of inflammatory responses in diverse diseases, such as allergic airway inflammation. Herein, we have deciphered the molecular recognition features of the interaction of Siglec-8 with the mAb lirentelimab (2C4, under clinical development) and with a sialoside mimetic with the potential to suppress mast cell degranulation. The three-dimensional structure of Siglec-8 and the fragment antigen binding (Fab) portion of the anti-Siglec-8 mAb 2C4, solved by X-ray crystallography, reveal that 2C4 binds close to the carbohydrate recognition domain (V-type Ig domain) on Siglec-8. We have also deduced the binding mode of a high-affinity analogue of its sialic acid ligand (9-N-napthylsufonimide-Neu5Ac, NSANeuAc) using a combination of NMR spectroscopy and X-ray crystallography. Our results show that the sialoside ring of NSANeuAc binds to the canonical sialyl binding pocket of the Siglec receptor family and that the high affinity arises from the accommodation of the NSA aromatic group in a nearby hydrophobic patch formed by the N-terminal tail and the unique G–Gâ€Č loop. The results reveal the basis for the observed high affinity of this ligand and provide clues for the rational design of the next generation of Siglec-8 inhibitors. Additionally, the specific interactions between Siglec-8 and the N-linked glycans present on the high-affinity receptor FcΔRIα have also been explored by NMR.This work was supported by operating grant PID2019-107770RA-I00 (J.E.-O.) from the Agencia Estatal InvestigaciĂłn of Spain and by the European Research Council (ERC-2017-AdG, 788143-RECGLYCANMR to J.J.-B.). We also thank the Marie-SkƂodowska-Curie actions (ITN Glytunes grant agreement no. 956758 to J.E.-O and ITN BactiVax under grant agreement no. 860325 to U.A.). Additional funding was provided by CIBER, an initiative of Instituto de Salud Carlos III (ISCIII), Madrid, Spain. We also thank the Ikerbasque Basque Foundation of Science and the Spanish Ministry of Economy, Industry and Competitiveness (for the postdoctoral contract Juan de la Cierva IncorporaciĂłn to J.E-O). X-ray diffraction experiments described in this paper were performed using the XALOC synchrotron beamline at ALBA (Spain) and PXIII in Swiss Light Source (Switzerland)
    corecore