308 research outputs found

    AER Building Blocks for Multi-Layer Multi-Chip Neuromorphic Vision Systems

    Get PDF
    A 5-layer neuromorphic vision processor whose components communicate spike events asychronously using the address-eventrepresentation (AER) is demonstrated. The system includes a retina chip, two convolution chips, a 2D winner-take-all chip, a delay line chip, a learning classifier chip, and a set of PCBs for computer interfacing and address space remappings. The components use a mixture of analog and digital computation and will learn to classify trajectories of a moving object. A complete experimental setup and measurements results are shown.UniĂłn Europea IST-2001-34124 (CAVIAR)Ministerio de Ciencia y TecnologĂ­a TIC-2003-08164-C0

    La enfermedad de Chagas: retos del tratamiento

    Get PDF
    La enfermedad de Chagas o tripanosomiasis americana es una parasitosis ocasionada por el protozoario hemoflagelado Trypanosoma cruzi (T. cruzi), el cual es transmitido al hombre y a otros mamíferos principalmente a través de insectos hematófagos de la subfamilia Triatominae. Otras formas de transmisión son la sanguínea, a través de trasplante de órganos, la vía congénita, por accidentes de laboratorio y la vía oral. En cuanto a la vía congénita se estima que, en Latinoamérica, existen unos 2 millones de mujeres en edad fértil, con capacidad para transmitir el parásito al feto. Así mismo, se ha reportado que se infectan, al menos, 15,000 neonatos cada año en Latinoamérica y 2,000, en Norteaméric

    PERFIL DEL USUARIO CON RETENCIĂ“N AGUDA DE ORINA EN UN HOSPITAL COMARCAL

    Get PDF
    During a brief lapse of time we carried out a gathering of data of all the patients who came to the Fundació Hospital Asil de Granollers (FHAG) with signs of suffering an acute retention of urine, which is the most frequent urological emergency in our service.We tried to describe the clinical profile, personal history and techniques most used in this type of patients. We carried out an observational and prospective study by means of a series of questions asked from August 1 until December 31, 2008 to the 87 visited patients.We analysed variables such as: filiation, personal history, reason for consultation and techniques carried out.An 96 % of the visited ones were males of an average age of 69 years, 63% of them had benign prostatic hyperplasia. The most frequent reason for consultation was an acute retention of urine. Nursing staff catheterized 85% and assisted 75% before being visited by the surgeon.Thanks to the information obtained in the study we created a clinical profile of the patient who comes to the Emergency Service with an acute retention of urine. The aim of these profiles was to personalize our assistance to the maximum and to know the needs that these patients present due to their pathology.Pretendemos describir el perfil clínico, antecedentes y técnicas más utilizadas en los pacientes que acuden al Servicio de Urgencias de la Fundación Hospital Asilo de Granollers (FHAG) con clínica sugestiva de retención aguda de orina (RAO). Se trata de la urgencia urológica más frecuentada en nuestro servicio.Realizamos para ello un estudio observacional y prospectivo mediante una serie de preguntas recogidas desde el 1 de agosto hasta el 31 de diciembre de 2008 en el que se incluyó a 87 pacientes visitados. Se analizaron variables tales como: filiación, antecedentes personales, motivo de consulta y técnicas llevadas a cabo.De los visitados un 96% son varones con una media de edad de 69 años, en el que un 63% tienen hipertrofia benigna de próstata (HBP), el motivo más frecuente es el de retención aguda de orina, el 85% fue sondado por enfermería y el 75% fue asistido por enfermería antes de ser visitado por el cirujano.Gracias a la información obtenida en el trabajo creamos un perfil clínico del paciente que es visitado en el servicio de urgencias con RAO con el propósito de personalizar al máximo la asistencia y conocer cuáles son las necesidades que éstos presentan debido a su patología

    Banco de La ConcepciĂłn: A new Natura 2000 Marine Site off Canary Islands

    Get PDF
    The main objective of the LIFE+ INDEMARES project is to contribute to the protection and sustainable use of the biodiversity in the Spanish seas through the identification of valuable areas for the Natura 2000 Network. The Spanish Institute of Oceanography (IEO) has been in charge of implementing scientific surveys to map sensitive habitats of seven of the ten INDEMARES areas, and to determine the fisheries footprint over these areas. Banco de La Concepci´on is one of the areas chosen to be depicted in the frame of INDEMARES project. Located at 71 km to the NE of Lanzarote, at the coordinates 29º 55’ Latitude N and 12º 45’ Longitude W, Banco de la Concepci´on raises from 2,541 m up to its summit at 170 m deep. The biological richness of Banco de la Concepci´on is very influenced by the deep water up-welling phenomena, which create a high productivity, attracting a multitude of pelagic species, such as cetaceans, turtles, sharks, and tunas looking for food. In its vicinity, fishery resources such as goraz, anglerfish, and hakes, are abundant, and a rich invertebrate fauna cohabits in their bottoms. Banco de la Concepci´on is a traditional fishing area of oceanic pelagic species, and very good to catch demersal fish; it is highly visited by Galician and Portuguese drifters and long liners that fish in Mauritania, and mainly by the Andalusian longliners. In general, its main impacts are related to uncontrolled fishing pressure. The available information on the anthropogenic impact of the area was scarce, and its level of research was very poor as well, before INDEMARES project. Methodology approach complies with a multidisciplinary perspective, having described the area from geological, oceanographic, biological and fisheries points of view. Several surveys have taken place since 2009 to 2013 at Banco de La Concepci´on waters. Traps, longlines, beam trawls, benthic dredges and box corers have been used to sample benthic fauna. These last two, plus EM 3002 multibeam echosounder, PS 18 parametric sub bottom profiler, EA600 monobeam sounder, Seapath 200 positioning sensor and SV Plus sound velocity calibration sensor were used to make a geophysical study which provides a range of environmental factors. CTD was used to depict physical conditions of the water column. Finally, Remote Operated Vehicle Liropus 2000 and different photogrammetric tugged sleds were used to make a great effort of visual sampling. Data from VMS (Vessel Monitoring System) were used, combined with interviews to users (fishers), to describe the fishery uses in the area. Results from all this field work provide enough information for the administrations to establish a new Natura 2000 area, trying to reconcile protection of biodiversity and artisanal local economic activities. This establishment should take place at the end of a process of public consultation to stakeholders which is taking place in the present and which will help to shape the future Management Plan which will give details about permitted and prohibited uses

    Sensitive Habitats and fishing footprint off Canary Islands seamounts Amanay and El Banquete

    Get PDF
    The main objective of the LIFE+ INDEMARES project is to contribute to the protection and sustainable use of the biodiversity in the Spanish seas through the identification of valuable areas for the Natura 2000 Network. The Spanish Institute of Oceanography (IEO) has been in charge of implementing scientific surveys to map sensitive habitats of seven of the ten INDEMARES areas, and to determine the fisheries footprint over these areas. Sur y Oriente de Fuerteventura y Lanzarote is one of the areas chosen to be depicted in the frame of INDEMARES project, although the study about benthic habitats and fishery footprint carried by IEO has restricted to Amanay and El Banquete Seamounts. El Banquete really is the extension of southern continental shelf while Amanay seamount is located at 25 km from Jand´ıa Lighthouse (S of Fuerteventura) and 55 km from Las Palmas de Gran Canaria, at the coordinates 28º 07’ Latitude N and 14º 44’ LongitudeW, both volcanic buildings raise from more than 2,000 m up to their summits at 25-30 m deep, separated by a 1.500 m deep channel. The biological richness of Amanay and El Banquete seamounts is very influenced by the deep water up-welling phenomena, which create a high productivity, attracting a multitude of pelagic species, such as cetaceans, turtles, sharks, and tunas looking for food. There is also a high influence from Saharian up-welling. Both the seamounts tops and their vicinities are often visited by a large artisanal local fishing fleet which profits of their fishery resources; also a rich invertebrate fauna cohabits in their bottoms. In general, its main impacts are related to uncontrolled fishing pressure, and maritime navigation. The available information on the anthropogenic impact of the area was scarce, and its level of research was very poor as well, before INDEMARES project. Methodology approach complies with a multidisciplinary perspective, having described the area from geological, oceanographic, biological and fisheries points of view. Several surveys have taken place since 2009 to 2013 at Amanay and El Banquete waters. Traps, longlines, beam trawls, benthic dredges and box corers have been used to sample benthic fauna. These last two, plus EM 3002 multibeam echosounder, PS 18 parametric sub bottom profiler, EA600 monobeam sounder, Seapath 200 positioning sensor and SV Plus sound velocity calibration sensor were used to make a geophysical study which provides a range of environmental factors. CTD was used to depict physical conditions of the water column. Finally, different photogrammetric tugged sleds were used to make a great effort of visual sampling. Data from VMS (Vessel Monitoring System) were used, combined with interviews to users (fishers), landing samplings and scientific observation onboard, to describe the fishery uses in the area

    Chitosan/Poly(Dllactide-Co-Glycolide) Scaffolds for Tis- sue Engineering

    Get PDF
    Abstract Chitosan/poly(DL-lactide-co-glycolide) (Ch/DL PLG) composite scaffolds were fabricated by freeze-drying lyophilization, and were evaluated and compared for use as a bone regeneration scaffold through measurements of the compression mechanical properties of the porous scaffolds. Also, In vitro cell culture of Sprague-Dawley rat's osteoblasts were used to evaluate the phenotype expression of cells in the scaffolds, characterizing the cellular adhesion, proliferation and alkaline phosphatase activity. The gene expression of osteocalcin, sialoprotein, alkaline phosphatase, Type I collagen and TGFb1 were confirmed in the samples; moreover, it was confirmed, the mineralization by IR spectra and EDS analysis. Our results thus show that Ch/DL PLG scaffolds are suitable for biological applications

    Stability of the Fe23Zr6 phase in Zr alloys

    Get PDF
    Alloyed with iron (Fe), niobium (Nb) and tin (Sn), zirconium (Zr) is the main element in the Zirlo-type alloys, vastly used as structural elements and as containers of burnable elements in nuclear reactors. Although Zr is a major component in this type of alloys, it is most important to know the phase diagrams of their components as well as possible. The binary phase diagram of the Fe-Zr system has been studied for some time now by several authors. However, in the Fe-rich region the existence of the Fe23Zr6 compound, which was first described in 1962, remains controversial. To clarify the origin of this phase, the present work deals with the manufacture and prolonged heat treatments at different temperatures of alloys located in the Fe-rich region of the Fe-Nb-Zr, Fe-Sn-Zr and Fe-Zr phase diagram. The experiments have been performed with raw materials whose degree of purity was varied. The phases present were identified by using X-ray diffraction (XRD), semi quantitative microanalysis by using scanning electron microscopy analysis with energy dispersive spectrometry (SEM-EDS) and quantitative microanalysis by using electron microprobe with wavelength dispersive spectrometry (SEM-WDS). Finally, by using the results of characterization of heat-treated alloys for long annealing times at different temperatures, it is suggested that the presence of the Fe23Zr6 compound is an equilibrium phase of the Fe-Zr binary system.Fil: Tolosa, Martín Rodrigo. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; ArgentinaFil: Jiménez, María Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; ArgentinaFil: Pedrazzini, Pablo. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche). División Bajas Temperaturas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Arreguez, Constanza. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; ArgentinaFil: Acosta, Lucas Pedro. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; ArgentinaFil: Gomez, Adrian Guillermo. Comisión Nacional de Energía Atómica. Centro Atómico Ezeiza; ArgentinaFil: Granovsky, Marta S.. Universidad Nacional de San Martín. Instituto Sabato; ArgentinaFil: Brizuela, Horacio Guillermo. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; ArgentinaFil: Arias de Widuczynski, Delia Ernestina. Universidad Nacional de San Martín. Instituto Sabato; ArgentinaFil: Nieva, Enrique Nicolás. Universidad Nacional de Tucumán. Instituto de Física del Noroeste Argentino. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Instituto de Física del Noroeste Argentino; Argentin

    Geographical variations in the benefit of applying a prioritization system for cataract surgery in different regions of Spain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In Spain, there are substantial variations in the utilization of health resources among regions. Because the need for surgery differs in patients with appropriate surgical indication, introducing a prioritization system might be beneficial. Our objective was to assess geographical variations in the impact of applying a prioritization system in patients on the waiting list for cataract surgery in different regions of Spain by using a discrete-event simulation model.</p> <p>Methods</p> <p>A discrete-event simulation model to evaluate demand and waiting time for cataract surgery was constructed. The model was reproduced and validated in five regions of Spain and was fed administrative data (population census, surgery rates, waiting list information) and data from research studies (incidence of cataract). The benefit of introducing a prioritization system was contrasted with the usual first-in, first-out (FIFO) discipline. The prioritization system included clinical, functional and social criteria. Priority scores ranged between 0 and 100, with greater values indicating higher priority. The measure of results was the waiting time weighted by the priority score of each patient who had passed through the waiting list. Benefit was calculated as the difference in time weighted by priority score between operating according to waiting time or to priority.</p> <p>Results</p> <p>The mean waiting time for patients undergoing surgery according to the FIFO discipline varied from 1.97 months (95% CI 1.85; 2.09) in the Basque Country to 10.02 months (95% CI 9.91; 10.12) in the Canary Islands. When the prioritization system was applied, the mean waiting time was reduced to a minimum of 0.73 months weighted by priority score (95% CI 0.68; 0.78) in the Basque Country and a maximum of 5.63 months (95% CI 5.57; 5.69) in the Canary Islands. The waiting time weighted by priority score saved by the prioritization system varied from 1.12 months (95% CI 1.07; 1.16) in Andalusia to 2.73 months (95% CI 2.67; 2.80) in Aragon.</p> <p>Conclusion</p> <p>The prioritization system reduced the impact of the variations found among the regions studied, thus improving equity. Prioritization allocates the available resources within each region more efficiently and reduces the waiting time of patients with greater need. Prioritization was more beneficial than allocating surgery by waiting time alone.</p

    Who leads research productivity growth? Guidelines for R&D policy-makers

    Full text link
    [EN] This paper evaluates to what extent policy-makers have been able to promote the creation and consolidation of comprehensive research groups that contribute to the implementation of a successful innovation system. Malmquist productivity indices are applied in the case of the Spanish Food Technology Program, finding that a large size and a comprehensive multi-dimensional research output are the key features of the leading groups exhibiting high efficiency and productivity levels. While identifying these groups as benchmarks, we conclude that the financial grants allocated by the program, typically aimed at small-sized and partially oriented research groups, have not succeeded in reorienting them in time so as to overcome their limitations. We suggest that this methodology offers relevant conclusions to policy evaluation methods, helping policy-makers to readapt and reorient policies and their associated means, most notably resource allocation (financial schemes), to better respond to the actual needs of research groups in their search for excellence (micro-level perspective), and to adapt future policy design to the achievement of medium-long term policy objectives (meso and macro-level).Jiménez Saez, F.; Zabala Iturriagagoitia, JM.; Zofio, JL. (2013). Who leads research productivity growth? Guidelines for R&D policy-makers. Scientometrics. 94(1):273-303. doi:10.1007/s11192-012-0763-0S273303941Abbring, J. H., & Heckman, J. J. (2008). Dynamic policy analysis. In L. Mátyás & P. Sevestre (Eds.), The econometrics of panel data (3rd ed., pp. 795–863). Heidelberg: Springer.Acosta Ballesteros, J., & Modrego Rico, A. (2001). Public financing of cooperative R&D projects in Spain: the concerted projects under the national R&D plan. Research Policy, 30, 625–641.Arbel, A. (1981). Policy evaluation in the dynamic input–output model. International Journal of Systems Science, 12, 255–260.Arnold, E. (2004). Evaluation research and innovation policy: A systems world needs systems evaluations. Research Evaluation, 13, 3–17.Arrow, J. K. (1962). Economic welfare and the allocation of resources for inventions. In R. Nelson (Ed.), The rate and direction of inventive activity: Economic and social factor (pp. 609–625). Princeton: Princeton University Press and NBER.Autio, E. (1997). New, technology-based firms in innovation networks symplectic and generative impacts. Research Policy, 26, 263–281.Balk, B. (2001). Scale efficiency and productivity change. Journal of Productivity Analysis, 15, 153–183.Balzat, M., & Hanusch, H. (2004). Recent trends in the research on national innovation systems. Journal of Evolutionary Economics, 14, 197–210.Berg, S. A., Førsund, F. R., & Jansen, E. S. (1992). Malmquist indices of productivity growth during the deregulation of Norwegian banking. Scandinavian Journal of Economics, 94, S211–S228.Bergek, A., Carlsson, B., Lindmark, S., Rickne, A., & Jacobsson, S. (2008). Analyzing the functional dynamics of technological innovation systems: A scheme of analysis. Research Policy, 37, 407–429.Bonaccorsi, A., & Daraio, C. (2005). Exploring size and agglomeration effects on public research productivity. Scientometrics, 63(1), 87–120.Buisseret, T. J., Cameron, H., & Georghiou, L. (1995). What difference does it make? Additionality in the public support of R&D in large firms. International Journal of Technology Management, 10, 587–600.Bustelo, M. (2006). The potential role of standards and guidelines in the development of an evaluation culture in Spain. Evaluation, 12, 437–453.Chavas, J. P., & Cox, T. M. (1999). A generalized distance function and the analysis of production efficiency. Southern Economic Journal, 66, 295–318.CICYT. (1987). Programa Nacional de Tecnología de los Alimentos. Madrid: Ministerio de Educación y Ciencia.CICYT (1988). Plan Nacional de Investigación Científica y Desarrollo Tecnológico 1988–1991. Ministerio de Educación y Ciencia, Secretaría de Estado de Universidades e Investigación, Madrid.Cooper, W. W., Seiford, L. M., & Tone, K. (2000). Data envelopment analysis: A comprehensive text with models, applications, references and DEA-software. Boston: Kluwer Academic Publishers.David, P., Mowery, D., & Steinmueller, W. E. (1994). Analyzing the economic payoffs from basic research. In D. Mowery (Ed.), Science and technology policy in interdependent economies (pp. 57–78). Boston: Kluwer Academic Publishers.Dopfer, K., Foster, J., & Potts, J. (2004). Micro-meso-macro. Journal of Evolutionary Economics, 14, 263–279.Edquist, C., & Hommen, L. (2008). Comparing national systems of innovation in Asia and Europe: Theory and comparative framework. In C. Edquist & L. Hommen (Eds.), Small country innovation systems: Globalisation, change and policy in Asia and Europe (pp. 1–28). Cheltenham: Edward Elgar.Färe, R., Grosskopf, S., Norris, M., & Zhang, Z. (1994). Productivity growth, technical progress, and efficiency change in industrialized countries. American Economic Review, 84, 66–83.Farrell, M. (1957). The measurement of productive efficiency. Journal of the Royal Statistical Society, Series A, General, 120(3), 253–281.Førsund, F. R. (1993). Productivity growth in Norwegian ferries. In H. O. Fried, C. A. K. Lovell, & S. S. Schmidt (Eds.), The measurement of productive efficiency: Techniques and applications (pp. 352–373). New York: Oxford University Press.Førsund, F. R. (1997). The Malmquist productivity index, TFP and scale. University of Oslo, Oslo: Working Paper, Department of Economics and Business Administration.Freeman, C. (1987). Technology policy and economic performance: Lessons from Japan. London: Printer Publishers.García-Martínez, M., & Briz, J. (2000). Innovation in the Spanish food & drink industry. International Food and Agribusiness Management Review, 3, 155–176.Gibbons, M., Limoges, C., Nowotny, H., Schwartzman, S., Scott, P., & Trow, M. (1994). The new production of knowledge: The dynamics of science and research in contemporary societies. London: Sage Publications.Grammatikopoulos, V., Kousteiios, A., Tsigilis, N., & Theodorakis, Y. (2004). Applying dynamic evaluation approach in education. Studies in Educational Evaluation, 30, 255–263.Grifell-Tatjé, E., & Lovell, C. A. K. (1999). A generalized Malmquist productivity index. Top, 7(1), 81–101.Grimpe, C., & Sofka, W. (2007). Search patterns and absorptive capacity: A comparison of low- and high-technology firms from thirteen European countries. Discussion paper no. 07-062. Centre for European Economic Research (ZEW), Mannheim, Germany.Guan, J., & Wang, J. (2004). Evaluation and interpretation of knowledge production efficiency. Scientometrics, 59(1), 131–155.Hekkert, M. P., Suurs, R. A. A., Negro, S. O., Kuhlmann, S., & Smits, R. E. H. M. (2007). Functions of innovation systems: A new approach for analysing technological change. Technological Forecasting and Social Change, 74, 413–432.Jiménez-Sáez, F. (2005). Una Evaluación del Programa Nacional de Tecnología de Alimentos: análisis de la articulación fomentada sobre el Sistema Alimentario de Innovación en España. PhD dissertation, Servicio de Publicaciones de la Universidad Politécnica de Valencia, Valencia.Jiménez-Sáez, F., Zabala-Iturriagagoitia, J. M., Zofío, J. L., & Castro-Martínez, E. (2011). Evaluating research efficiency within National R&D Programmes. Research Policy, 40, 230–241.Kao, C. (2008). Efficiency analysis of university departments: An empirical study. OMEGA, 36, 653–664.Kuhlmann, S. (2003). Evaluation of research and innovation policies: A discussion of trends with examples from Germany. International Journal of Technology Management, 26, 131–149.Laitinen, E. K. (2002). A dynamic performance measurement system: Evidence from small Finnish technology companies. Scandinavian Journal of Management, 18, 65–99.Laranja, M., Uyarra, E., & Flanagan, K. (2008). Policies for science, technology and innovation: Translating rationales into regional policies in a multi-level setting. Research Policy, 37(5), 823–835.Lee, T.-L., & von Tunzelman, N. (2005). A dynamic analytic approach to national innovation systems: The IC industry in Taiwan. Research Policy, 34, 425–440.Lipsey, R., & Carlaw, K. (1998). A structuralist assessment of technology policies: Taking Schumpeter seriously on policy. Ottawa: Industry Canada Research Publications Program.Lipsey, R., Carlaw, K., & Bekar, C. (2005). Economic transformations: General purpose technologies and long term economic growth. Oxford: Oxford University Press.Lundvall, B. Å. (1992). National systems of innovation: Toward a theory of innovation and interactive learning. London: Printer Publishers.Lundvall, B. Å., Johnson, B., Andersen, E. S., & Dalum, B. (2002). National systems of production, innovation and competence building. Research Policy, 31, 213–231.Markard, J., & Truffer, B. (2008). Actor-oriented analysis of innovation systems: Exploring micro-meso level linkages in the case of stationary fuel cells. Technology Analysis & Strategic Management, 20, 443–464.Metcalfe, J. S. (2002). Equilibrium and evolutionary foundations of competition and technology policy: New perspectives on the division of labour and the innovation process. CRIC Working Papers series, University of Manchester.Miettinen, R. (1999). The riddle of things. Activity theory and actor network theory as approaches of studying innovations. Mind, Culture and Activity, 6, 170–195.Molas-Gallart, J., & Davies, A. (2006). Toward theory-led evaluation: The experience of European science, technology, and innovation policies. American Journal of Evaluation, 27, 64–82.Mytelka, L. K., & Smith, K. (2002). Policy learning and innovation theory: An interactive and co-evolving process. Research Policy, 31, 1467–1479.Olazarán, M., Lavía, C., & Otero, B. (2004). ¿Hacia una segunda transición en la ciencia? Política científica y grupos de investigación. Revista Española de Sociología, 4, 143–172.Potts, J. (2007). The innovation system & economic evolution. Productivity commission submission, public support for science & innovation, productivity commission, Camberra.Ray, S., & Desli, E. (1997). Productivity growth, technical progress, and efficiency change in industrialized countries: Comment. American Economic Review, 87(5), 1033–1039.Rip, A., & Nederhof, A. J. (1986). Between dirigism and laissez-faire: Effects of implementing the science policy priority for biotechnology in the Netherlands. Research Policy, 15, 253–268.Schmidt, E. K., Graversen, E. K., & Langberg, K. (2003). Innovation and dynamics in public research environments in Denmark: A research-policy perspective. Science and Public Policy, 30, 107–116.Schmoch, U., & Schubert, T. (2009). Sustainability of incentives for excellent research—The German case. Scientometrics, 81(1), 195–218.Shephard, R. (1970). Theory of cost and production functions. New Jersey: Princeton University Press.Simar, L., & Wilson, P. W. (1998). Productivity growth in industrialized countries. Discussion paper 9810, Universite Catholique de Louvain, Belgium.Van Raan, A. F. J. (2000). R&D evaluation at the beginning of the new century. Research Evaluation, 8, 81–86.Zofio, J. L. (2007). Malmquist productivity index decompositions: A unifying framework. Applied Economics, 39, 2371–2387.Zofio, J. L., & Lovell, C. A. K. (1998). Yet another Malmquist productivity index decomposition. Working paper, Department of Economics, University of Georgia, Athens, GA 30602, USA.Zofio, J. L., & Lovell, C. A. K. (2001). Graph efficiency and productivity measures: An application to US agriculture. Applied Economics, 33(10), 1433–1442.Zofio, J. L., & Prieto, A. M. (2006). Return to dollar, generalized distance function and the Fisher productivity index. Spanish Economic Review, 8, 113–138
    • …
    corecore