13 research outputs found

    Androgen deprivation decreases prostate specific antigen in the absence of tumor: implications for interpretation of PSA results

    Get PDF
    Background: Prostate-specific antigen (PSA) is used as an outcome measure for relapsed disease in prostate cancer. Nonetheless, there are considerable concerns about its indiscriminate use as a surrogate endpoint for cell growth or survival. We hypothesized that treatment with a luteinizing hormone releasing hormone (LHRH) analog would decrease PSA levels even in the absence of malignant disease. Methods: We determined testosterone and PSA levels in 30 healthy volunteers after a single intramuscular injection of a LHRH depot formulation. Testosterone and PSA levels were quantified by radioimmunoassay and electrochemi-luminescence immunoassay, respectively. Results: After an initial flare-up during the first 3 days testosterone decreased reaching castration levels in 18 of the 30 young men (60%). After the nadir on day 28, testosterone levels increased to normal again. Changes in PSA paralleled those of testosterone. Castration reduced PSA levels by 29% (95% CI 19%-39%) compared to baseline (p<0.0001). Conclusions: LHRH superagonists decrease PSA levels by testosterone deprivation. Conferring these findings to tumor patients, decreases in PSA after treatment with LHRH analogs might not only reflect disease regression but also a direct testosterone mediated effect on PSA. Thus, PSA levels should be cautiously interpreted when patients receive hormonal therap

    Dexamethasone Downregulates l

    No full text

    The use of frozen plasma samples in thromboelastometry

    No full text
    Thromboelastometry is increasingly used in the clinical and scientific setting. The use of frozen plasma samples may be useful in overcoming certain limitations such as local and timely availability. Whole blood (WB) samples of 20 healthy volunteers were obtained, and plasma was generated. NATEM (n = 20), EXTEM (n = 20) and INTEM (n = 8) analyses were performed in WB, fresh plasma and frozen and thawed plasma. Dabigatran (500, 1000 ng/ml), rivaroxaban (100, 200 ng/ml) or alteplase (333 ng/ml) were added ex vivo to WB, and thromboelastometry was performed in WB and in frozen and thawed plasma samples. Clot formation time, mean clot firmness and the area under the curve were significantly altered in plasma compared to WB. In INTEM and EXTEM analysis, clotting time (CT) was comparable between WB (100%) and fresh (INTEM 114% and EXTEM 93%, ratio of the means) and frozen plasma samples (85 and 99%), whereas in NATEM analysis, the CT increased in fresh (193%) and frozen plasma samples (130%). Dabigatran dose-dependently increased the CT approximately 5- and 9-fold in WB and even more pronounced 10- and 26-fold in plasma. Accordingly, rivaroxaban dose-dependently increased the CT 2- and 2.7-fold in WB, and 3.5- and 4-fold in plasma samples. Hyperfibrinolysis was achieved by addition of alteplase in all WB samples and was reproducible in plasma samples. In conclusion, thromboelastometry, especially INTEM and EXTEM analyses, is possible using frozen and stored plasma samples with comparable results to the corresponding whole blood samples.(VLID)355922
    corecore