126 research outputs found

    Parents’ Perception of Overweight in Relation to Child Mood and Disordered Eating

    Full text link
    Parental perception of their child’s weight may impact child’s psychological functioning; however, there is a dearth of literature examining this relationship. Data suggest that parental concern with child’s overweight may be related to child distress and/or disordered eating. Yet, it is unknown if parents’ perception of teens’ overweight relates to child functioning. We examined 113 adolescent (12-17y; 14.4 ± 1.6) boys and girls (53% girls) with overweight or obesity (BMIz 2.0 ± .45) and their parents. Youth self-identified as 53% Caucasian or White, 27% Black or African American, 3.5% Asian, and 16.5% multiple races, unknown, or other. Parents reported on their perception of their child’s overweight as either “somewhat/sometimes true” and “very/often true.” Teens reported on their symptoms of anxiety and depression and whether they had experienced loss-of-control eating in the past month. T-tests and Chi Square analyses were used to analyze child factors based on parent perceptions. Compared to parents who reported “somewhat/sometimes true” (n = 51), parents who reported “very/often true” (n = 62), had children with significantly higher anxiety (p = .048) and higher likelihood of reporting loss-of-control eating in the past month (p = .039). There were no differences in symptoms of depression. Including sex, race, and BMIz as covariates did not alter findings. In summary, youth whose parents perceive their children as more definitively overweight are more likely to report symptoms of anxiety and disordered eating. Further data are needed to determine if parental perception is related to their adolescent child’s overall well-being

    PEGylated PRINT Nanoparticles: The Impact of PEG Density on Protein Binding, Macrophage Association, Biodistribution, and Pharmacokinetics

    Get PDF
    In this account, we varied PEGylation density on the surface of hydrogel PRINT nanoparticles and systematically observed the effects on protein adsorption, macrophage uptake, and circulation time. Interestingly, the density of PEGylation necessary to promote a long-circulating particle was dramatically less than what has been previously reported. Overall, our methodology provides a rapid screening technique to predict particle behavior in vivo and our results deliver further insight to what PEG density is necessary to facilitate long-circulation

    ORS Responsive Manufacturing 6U Spacecraft

    Get PDF
    The Operationally Responsive Space Office is developing a small satellite capability and small satellite design specifically for advanced manufacturing and assembly methods for a semi-automated assembly and test facility. Designing a small satellite to be assembled and tested with this novel and innovative approach enables reduced costs, schedule, and risk. This presentation will discuss the implementation, unique design features, lessons learned, and challenges associated with developing for this new rapid-assembly capability as well as the unique benefits and challenges of assembly and test using automated, robotic systems. The presentation will also include discussions of the role that design-for-manufacturing, modular open system architecture, componentized subsystems, and standardized interfaces each play in developing the spacecraft. Assembly processes, ground support interfaces, and other assembly, integration and test needs will also be discussed

    PRINT: A Novel Platform Toward Shape and Size Specific Nanoparticle Theranostics

    Get PDF
    Nanotheranostics represents the next generation of medicine, fusing nanotechnology, therapeutics, and diagnostics. By integrating therapeutic and imaging agents into one nanoparticle, this new treatment strategy has the potential not only to detect and diagnose disease but also to treat and monitor the therapeutic response. This capability could have a profound impact in both the research setting as well as in a clinical setting. In the research setting, such a capability will allow research scientists to rapidly assess the performance of new therapeutics in an effort to iterate their designs for increased therapeutic index and efficacy. In the clinical setting, theranostics offers the ability to determine whether patients enrolling in clinical trials are responding, or are expected to respond, to a given therapy based on the hypothesis associated with the biological mechanisms being tested. If not, patients can be more quickly removed from the clinical trial and shifted to other therapeutic options. To be effective, these theranostic agents must be highly site specific. Optimally, they will carry relevant cargo, demonstrate controlled release of that cargo, and include imaging probes with a high signal-to-noise ratio

    Generating Better Medicines for Cancer

    Get PDF
    The complexity of tumor biology warrants tailored drug delivery for overcoming the major challenges faced by cancer therapies. The versatility of the PRINTÂź (Particle Replication In Non-wetting Templates) process has enabled the preparation of shape- and size-specific particles with a wide range of chemical compositions and therapeutic cargos. Different particle matrices and drugs may be combined in a plug-and-play approach, such that physico-chemical characteristics of delivery vectors may be optimized for biocompatibility, cargo stability and release, circulation half-life, and efficacy. Thus, the engineering of particles for cancer therapy with specific biophysical behaviors and cellular responses has been demonstrated via the PRINT process

    Subtumoral analysis of PRINT nanoparticle distribution reveals targeting variation based on cellular and particle properties

    Get PDF
    AbstractThe biological activity of nanoparticle-directed therapies critically depends on cellular targeting. We examined the subtumoral fate of Particle Replication in Non-Wetting Templates (PRINT) nanoparticles in a xenografted melanoma tumor model by multi-color flow cytometry and in vivo confocal tumor imaging. These approaches were compared with the typical method of whole-organ quantification by radiolabeling. In contrast to radioactivity based detection which demonstrated a linear dose-dependent accumulation in the organ, flow cytometry revealed that particle association with cancer cells became dose-independent with increased particle doses and that the majority of the nanoparticles in the tumor were associated with cancer cells despite a low fractional association. In vivo imaging demonstrated an inverse relationship between tumor cell association and other immune cells, likely macrophages. Finally, variation in particle size nonuniformly affected subtumoral association. This study demonstrates the importance of subtumoral targeting when assessing nanoparticle activity within tumors.From the Clinical EditorParticle Replication in Non-Wetting Templates (PRINT) technology allows the production of nanoparticles with uniform size. The authors in the study utilized PRINT-produced nanoparticles to investigate specific tumor uptake by multi-color flow cytometry and in vivo confocal tumor imaging. This approach allowed further in-depth correlation between nanoparticle properties and tumor cells and should improve future design

    Effect of Aspect Ratio and Deformability on Nanoparticle Extravasation through Nanopores

    Get PDF
    We describe the fabrication of filamentous hydrogel nanoparticles using a unique soft lithography based particle molding process referred to as PRINT (Particle Replication in Non-wetting Templates). The nanoparticles possess a constant width of 80 nm, and we varied their lengths ranging from 180 nm to 5000 nm. In addition to varying the aspect ratio of the particles, the deformability of the particles was tuned by varying the cross-link density within the particle matrix. Size characteristics such as hydrodynamic diameter and persistence length of the particles were analyzed using dynamic light scattering and electron microscopy techniques, respectively, while particle deformability was assessed by atomic force microscopy. Additionally, the ability of the particles to pass through membranes containing 0.2 ÎŒm pores was assessed by means of a simple filtration technique, and particle recovery was determined using fluorescence spectroscopy. The results show that particle recovery is mostly independent of aspect ratio at all cross-linker concentrations utilized, with the exception of 96 wt% PEG diacrylate 80 × 5000 nm particles, which showed the lowest percent recovery

    A cytosolic invertase is required for normal growth and cell development in the model legume, Lotus japonicus

    Get PDF
    Neutral/alkaline invertases are a subgroup, confined to plants and cyanobacteria, of a diverse family of enzymes. A family of seven closely-related genes, LjINV1–LjINV7, is described here and their expression in the model legume, Lotus japonicus, is examined. LjINV1 previously identified as encoding a nodule-enhanced isoform is the predominant isoform present in all parts of the plant. Mutants for two isoforms, LjINV1 and LjINV2, were isolated using TILLING. A premature stop codon allele of LjINV2 had no effect on enzyme activity nor did it show a visible phenotype. For LjINV1, premature stop codon and missense mutations were obtained and the phenotype of the mutants examined. Recovery of homozygous mutants was problematic, but their phenotype showed a severe reduction in growth of the root and the shoot, a change in cellular development, and impaired flowering. The cellular organization of both roots and leaves was altered; leaves were smaller and thicker with extra layers of cells and roots showed an extended and broader zone of cell division. Moreover, anthers contained no pollen. Both heterozygotes and homozygous mutants showed decreased amounts of enzyme activity in nodules and shoot tips. Shoot tips also contained up to a 9-fold increased level of sucrose. However, mutants were capable of forming functional root nodules. LjINV1 is therefore crucial to whole plant development, but is clearly not essential for nodule formation or function

    Docetaxel-Loaded PLGA Nanoparticles Improve Efficacy in Taxane-Resistant Triple-Negative Breast Cancer

    Get PDF
    Novel treatment strategies, including nanomedicine, are needed for improving management of triple-negative breast cancer. Patients with triple-negative breast cancer, when considered as a group, have a worse outcome after chemotherapy than patients with breast cancers of other subtypes, a finding that reflects the intrinsically adverse prognosis associated with the disease. The aim of this study was to improve the efficacy of docetaxel by incorporation into a novel nanoparticle platform for the treatment of taxane-resistant triple-negative breast cancer. Rod-shaped nanoparticles encapsulating docetaxel were fabricated using an imprint lithography based technique referred to as Particle Replication in Nonwetting Templates (PRINT). These rod-shaped PLGA-docetaxel nanoparticles were tested in the C3(1)-T-antigen (C3Tag) genetically engineered mouse model (GEMM) of breast cancer that represents the basal-like subtype of triple-negative breast cancer and is resistant to therapeutics from the taxane family. Thi..
    • 

    corecore