11 research outputs found

    Comparison of serum immunoglobulin G half-life in dairy calves fed colostrum, colostrum replacer or administered with intravenous bovine plasma.

    Get PDF
    In calves, passive immunity of immunoglobulins can be acquired through ingestion of colostrum or colostrum replacers. Plasma can been used to supplement immunoglobulins in healthy or sick calves. Serum half-life of colostral derived immuglobulin G (IgG) is estimated to be 20 days. Half-life of IgG is important in determining response to antigens and timing of vaccination in calves. To date studies evaluating half-life of colostrum replacer or plasma derived IgG are lacking. The objectives of this study were to compare the serum half-life of IgG derived from colostrum, colostrum replacer and plasma in dairy calves reared up to 35 days of age. Thirty Jersey calves were randomly assigned to receive colostrum or colostrum replacer by oroesophageal tubing or plasma by intravenous administration. Serum samples were collected at 2, 5, 7, 10, 14, 21, 28 and 35 days. Serum IgG concentrations were determined by radial immunodiffusion. The results indicated that half-life for IgG in colostrum fed (28.5 days) or plasma transfused calves (27.3 days) was longer than colostrum replacer fed calves (19.1 days). Further studies are required to evaluate pathogen specific immunoglobulins in order to recommend vaccination timing in calves fed colostrum replacers

    Fecal Microbial Communities in a Large Representative Cohort of California Dairy Cows

    Get PDF
    Improved sequencing and analytical techniques allow for better resolution of microbial communities; however, the agriculture field lacks an updated analysis surveying the fecal microbial populations of dairy cattle in California. This study is a large-scale survey to determine the composition of the bacterial community present in the feces of lactating dairy cattle on commercial dairy operations. For the study, 10 dairy farms across northern and central California representing a variety of feeding and management systems were enrolled. The farms represented three typical housing types including five freestall, two drylot and three pasture-based management systems. Fresh feces were collected from 15 randomly selected cows on each farm and analyzed using 16S rRNA gene amplicon sequencing. This study found that housing type, individual farm, and dietary components significantly affected the alpha diversity of the fecal microbiota. While only one Operational Taxonomic Unit (OTU) was common among all the sampled individuals, 15 bacterial families and 27 genera were shared among 95% of samples. The ratio of the families Coriobacteriaceae to Bifidobacteriaceae was significantly different between housing types and farms with pasture fed animals having a higher relative abundance of Coriobacteriaceae. A majority of samples were positive for at least one OTU assigned to Enterobacteriaceae and 31% of samples contained OTUs assigned to Campylobacter. However, the relative abundance of both taxa was <0.1%. The microbial composition displays individual farm specific signatures, but housing type plays a role. These data provide insights into the composition of the core fecal microbiota of commercial dairy cows in California and will further generate hypotheses for strategies to manipulate the microbiome of cattle

    Rumen sampling methods bias bacterial communities observed.

    No full text

    Refractometer assessment of colostral and serum IgG and milk total solids concentrations in dairy cattle

    Get PDF
    BACKGROUND: Estimation of the quantity of colostral IgG or serum IgG absorbed following ingestion of colostrum by calves is essential for monitoring the effectiveness of colostrum feeding practices on dairy farms. Milk total solids concentrations determination is a critical part of quality assessment of nonsaleable whole milk prior to feeding to calves. To date, on-farm methods to assess colostral IgG, serum IgG or milk total solids concentrations have been performed separately with various instruments. The objective of this study was to evaluate the diagnostic performance of a single electronic, hand-held refractometer for assessing colostral and serum IgG concentrations and milk total solids in dairy cattle. Colostral IgG, serum IgG and milk total solids concentrations were determined by the refractometer. Corresponding analysis of colostral and serum IgG concentrations were determined by radial immunodiffusion (RID) while milk total solids were determined by spectrophotometry. Sensitivity and specificity of the refractometer for colostrum and serum samples were calculated as determined by RID. Sensitivity and specificity of the refractometer for milk samples was calculated as determined by spectrophotometry. RESULTS: The sensitivity of the refractometer was 1 for colostral IgG, serum IgG and milk total solids determinations. Specificity of the refractometer was 0.66, 0.24 and 0 for colostral IgG, serum IgG and milk total solids determinations, respectively. The refractometer underestimated colostral IgG, serum IgG and milk total solids concentrations compared to the concentrations determined by RID or spectrophotometry. CONCLUSIONS: The refractometer was an acceptable, rapid, convenient on-farm method for determining colostral IgG and milk total solids. The refractometer was not an acceptable method for determination of serum IgG concentrations as it severely underestimated the serum IgG concentrations

    Rumen sampling methods bias bacterial communities observed.

    No full text
    The rumen is a complex ecosystem that plays a critical role in our efforts to improve feed efficiency of cattle and reduce their environmental impacts. Sequencing of the 16S rRNA gene provides a powerful tool to survey the bacterial and some archaeal. Oral stomach tubing a cow to collect a rumen sample is a rapid, cost-effective alternative to rumen cannulation for acquiring rumen samples. In this study, we determined how sampling method (oral stomach tubing vs cannulated grab sample), as well as rumen fraction type (liquid vs solid), bias the bacterial and archaeal communities observed. Liquid samples were further divided into liquid strained through cheesecloth and unstrained. Fecal samples were also collected to determine how these differed from the rumen sample types. The abundance of major archaeal communities was not different at the family level in samples acquired via rumen cannula or stomach tube. In contrast to the stable archaeal communities across sample type, the bacterial order WCHB1-41 (phylum Kiritimatiellaeota) was enriched in both liquid strained and unstrained samples as well as the family Prevotellaceae as compared to grab samples. However, these liquid samples had significantly lower abundance of Lachnospiraceae compared with grab samples. Solid samples strained of rumen liquid most closely resembled the grab samples containing both rumen liquid and solid particles obtained directly from the rumen cannula; therefore, inclusion of particulate matter is important for an accurate representation of the rumen bacteria. Stomach tube samples were the most variable and were most representative of the liquid phase. In comparison with a grab sample, stomach tube samples had significantly lower abundance of Lachnospiraceae, Fibrobacter and Treponema. Fecal samples did not reflect the community composition of the rumen, as fecal samples had significantly higher relative abundance of Ruminococcaceae and significantly lower relative abundance of Lachnospiraceae compared with grab samples
    corecore