10 research outputs found

    Period1 gates the circadian modulation of memory-relevant signaling in mouse hippocampus by regulating the nuclear shuttling of the CREB kinase pP90RSK

    Get PDF
    Memory performance varies over a 24-h day/night cycle. While the detailed underlying mechanisms are yet unknown, recent evidence suggests that in the mouse hippocampus, rhythmic phosphorylation of mitogen-activated protein kinase (MAPK) and cyclic adenosine monophosphate response element-binding protein (CREB) are central to the circadian (~\ua024\ua0h) regulation of learning and memory. We recently identified the clock protein PERIOD1 (PER1) as a vehicle that translates information encoding time of day to hippocampal plasticity. We here elaborate how PER1 may gate the sensitivity of memory-relevant hippocampal signaling pathways. We found that in wild-type mice (WT), spatial learning triggers CREB phosphorylation only during the daytime, and that this effect depends on the presence of PER1. The time-of-day-dependent induction of CREB phosphorylation can be reproduced pharmacologically in acute hippocampal slices prepared from WT mice, but is absent in preparations made from Per1-knockout (Per1) mice. We showed that the PER1-dependent CREB phosphorylation is regulated downstream of MAPK. Stimulation of WT hippocampal neurons triggered the co-translocation of PER1 and the CREB kinase pP90RSK (pMAPK-activated ribosomal S6\ua0kinase) into the nucleus. In hippocampal neurons from Per1 mice, however, pP90RSK remained perinuclear. A co-immunoprecipitation assay confirmed a high-affinity interaction between PER1 and pP90RSK. Knocking down endogenous PER1 in hippocampal cells inhibited adenylyl cyclase-dependent CREB activation. Taken together, the PER1-dependent modulation of cytoplasmic-to-nuclear signaling in the murine hippocampus provides a molecular explanation for how the circadian system potentially shapes a temporal framework for daytime-dependent memory performance, and adds a novel facet to the versatility of the clock gene protein PER1. (Figure presented.) We provide evidence that the circadian clock gene Period1 (Per1) regulates CREB phosphorylation in the mouse hippocampus, sculpturing time-of-day-dependent memory formation. This molecular mechanism constitutes the functional link between circadian rhythms and learning efficiency. In hippocampal neurons of wild-type mice, pP90RSK translocates into the nucleus upon stimulation with forskolin (left), whereas in Period1-knockout (Per1) mice (right) the kinase is trapped at the nuclear periphery, unable to efficiently phosphorylate nuclear CREB. Consequently, the presence of PER1 in hippocampal neurons is a prerequisite for the time-of-day-dependent phosphorylation of CREB, as it regulates the shuttling of pP90RSK into the nucleus. Representative immunofluorescence images show a temporal difference in phosphorylated cAMP response element-binding protein (pCREB; green color) levels in all regions of the dorsal hippocampus between a wild-type C3H mouse (WT; left) and a Period1-knockout (Per1; right) mouse. Images were taken 2\ua0h after lights on, thus, when fluctuating levels of pCREB peak in WT mouse hippocampus. Insets show a representative hippocampal neuron, in response to activating cAMP signaling, stained for the neuronal marker NeuN (red), the nuclear marker DAPI (blue) and the activated CREB kinase pP90RSK (green). The image was taken 2\ua0h after light onset (at the peak of the endogenous CREB phosphorylation that fluctuates with time of day). Magnification: 100X, inset 400X. Read the Editorial Highlight for this article on page 650. Cover image for this issue: doi: 10.1111/jnc.13332

    Elevated rhythmic Ras activity in the suprachiasmatic nucleus of synRas transgenic mice: implications for the regulation of the mammalian circadian clock

    No full text
    Poster presentation: Light is the main phase-adjusting stimulus of the circadian clock located in the suprachiasmatic nucleus (SCN). A candidate pathway transmitting photic information at the postsynaptic site in the SCN is the extracellular signal-regulated kinase (ERK 1/2) which has been previously shown to be an essential element in the photoentrainment of the circadian rhythm. An upstream activator of the ERK signalling route is the small intracellular GTPase Ras. Here we observed that endogenous Ras activity in the SCN was subjected to rhythmic changes, reaching maximum levels at the late subjective day and minimum levels at the late subjective night (CT22). In order to investigate if Ras would modulate the circadian cycle, we used transgenic mice expressing constitutively activated Val-12 Ha-Ras selectively in neurons (synRas mice). In these mice Ras activity was also cycling during the circadian rhythm yet, Ras activities were up-regulated at each time point measured. We investigated if this change in Ras activity translates into a behavioral phenotype by monitoring free-running activity rhythms under conditions of constant darkness. SynRas mice exhibited circadian rhythms in locomotor activities similar to WT mice. However, when challenged by applying a 15 minutes light pulse at CT22 to promote phase advance shifts, synRas mice were completely non-responsive. As a first step towards the possible intracellular mechanism of this behavioral change we analyzed ERK1/2 activities in more details: We found a 1,7-fold increase of circadian peak levels of ERK 1/2 activities at CT10 and CT14 in synRas mice, while at minimum levels (CT18, CT22) no differences were found between ERK1/2 activities of WT and synRas mice. In WT animals the 15 minutes light pulse at CT22 resulted in rapid up regulations of Ras, ERK1/2 and CREB activities as described previously by others. However, in correlation with the lack of a behavioral response, ERK1/2 but not Ras and CREB activities remained unchanged in synRas mice, suggesting that Ras-dependent and Ras-independent pathways may co-exist to regulate ERK1/2 and behavioral phase shifts in response to the acute light treatment. Next we investigated the length "tau" of the locomotor activity rhythm during constant darkness and found a slight shortening by about 10 minutes in synRas mice as compared to the WT littermates. Recently, "tau" has been discussed to be modulated by the interaction between glycogen synthase 3beta (GSK3beta) and a clock gene product (Per 2) that is involved in the determination of circadian phase durations. We describe here a down-regulation of GSK3beta phosphorylation in synRas mice as a possible mechanism of "tau" shortening. Taken together, cycling of Ras activity at elevated levels in the SCN during the circadian rhythm results in a distinct pattern of behavioral phenotype changes correlating with de-regulated ERK1/2 or GSK3beta activities

    Clock gene expression in the human pituitary gland

    No full text
    Pituitary function relies on strictly timed, yet plastic mechanisms, particularly with respect to the daytime-dependent coordination of hormone synthesis and release. In other systems, clock genes and their protein products are well-described candidates to anticipate the daily demands in neuroendocrine coupling and to manage cellular adaptation on changing internal or external circumstances. To elucidate possible mechanisms of time management, a total of 52 human autoptic pituitary glands were allocated to the 4 time-of-day groups, night, dawn, day, and dusk, according to reported time of death. The observed daytime-dependent dynamics in ACTH content supports a postmortem conservation of the premortem condition, and thus, principally validates the investigation of autoptic pituitary glands. Pituitary extracts were investigated for expression of clock genes Per1, Cry1, Clock, and Bmal1 and corresponding protein products. Only the clock gene Per1 showed daytime-dependent differences in quantitative real-time PCR analyses, with decreased levels observed during dusk. Although the overall amount in clock gene protein products PER1, CRY1, and CLOCK did not fluctuate with time of day in human pituitary, an indication for a temporally parallel intracellular translocation of PER1 and CRY1 was detected by immunofluorescence. Presented data suggest that the observed clock gene expression in human pituitary cells does not provide evidence for a functional intrinsic clockwork. It is suggested that clock genes and their protein products may be directly involved in the daytime-dependent regulation and adaptation of hormone synthesis and release and within homeostatic adaptive plasticity.</p

    Melatonin plays a crucial role in the regulation of rhythmic clock gene expression in the mouse pars tuberalis

    No full text
    Circadian rhythms in physiology and behavior are driven by a central clock residing within the hypothalamic suprachiasmatic nucleus (SCN). Molecularly, the biological clock is based on the transcriptional/translational feedback loop of clock genes (mPer, mCry, Clock, and Bmal1). Circadian expression of clock genes is not limited to the SCN, but is found in many peripheral tissues. Peripheral rhythms depend on neuroendocrine/neuronal output from the SCN. Melatonin, the hormone of darkness, represents an important neuroendocrine output of the circadian clock. The hypophyseal pars tuberalis (PT) is one of the main target regions for melatonin. The aim of the study was to test whether mPer, mCry, Clock, and Bmal1 are rhythmically expressed in the mouse PT and how the absence of melatonin receptors affects clock gene expression. We analyzed clock gene expression by in situ hybridization and compared wild-type (WT), melatonin 1 receptor knockout (MT1 ko), and melatonin 2 receptor knockout (MT2 ko) mice. mPer1, mCry1, Clock, and Bmal1, but not mPer2 and mCry2, were rhythmically expressed in the PT of WT and MT2 ko mice. In the PT of MT1 ko mice, expression of mPer1, mCry1, Clock, and Bmal1 was dramatically reduced. We conclude that melatonin, acting through the MT1 receptor, is an important regulator of rhythmic clock gene expression in the mouse PT

    Rhythms in clock proteins in the mouse pars tuberalis depend on MT1 melatonin receptor signalling

    No full text
    Melatonin provides a rhythmic neuroendocrine output, driven by a central circadian clock that encodes information about phase and length of the night. In the hypophyseal pars tuberalis (PT), melatonin is crucial for rhythmic expression of the clock genes mPer1 and mCry1, and melatonin acting in the PT influences prolactin secretion from the pars distalis. To examine further the possibility of a circadian clockwork functioning in the PT, and the impact of melatonin on this tissue, we assessed circadian clock proteins by immunohistochemistry and compared the diurnal expression in the PT of wild type (WT), and MT1 melatonin receptor-deficient (MT1-/-) mice. While in the PT of WT mice mPER1, mPER2, and mCRY1 showed a pronounced rhythm, mCRY2, CLOCK, and BMAL1 were constitutively present. Despite reported differences in maximal levels and timing of mCry1, mPer1, and mPer2 RNAs, the corresponding protein levels peaked simultaneously during late day, suggesting a codependency for their stabilization and/or nuclear entry. MT1-/- mice had reduced levels of mPER1, mCRY1, CLOCK and BMAL1, consistent with the earlier reported reduction in mRNA expression of these clock genes. Surprisingly, mPER2-immunoreaction was constitutively low, although mPer2 was rhythmically expressed in the PT of MT1-/- mice. This suggests that mPER2 is degraded due to the reduced levels of its stabilizing interaction partners mPER1 and mCRY1. The results show that melatonin, acting through the MT1, determines availability of the circadian proteins mPER1, mPER2 and mCRY1 and thus plays a crucial role in regulating rhythmicity in PT cells

    PERIOD1 coordinates hippocampal rhythms and memory processing with daytime

    No full text
    In species ranging from flies to mammals, parameters of memory processing, like acquisition, consolidation, and retrieval are clearly molded by time of day. However, mechanisms that regulate and adapt these temporal differences are elusive, with an involvement of clock genes and their protein products suggestive. Therefore, we analyzed initially in mouse hippocampus the daytime-dependent dynamics of parameters, known to be important for proper memory formation, like phosphorylation of the "memory molecule" cyclic adenosine monophosphate (cAMP) responsive element binding protein (CREB) and chromatin remodeling. Next, in an effort to characterize the mechanistic role of clock genes within hippocampal molecular dynamics, we compared the results obtained from wildtype (WT) -mice and mice deficient for the archetypical clock gene Period1 (Per1-mice). We detected that the circadian rhythm of CREB phosphorylation in the hippocampus of WT mice disappeared completely in mice lacking Per1. Furthermore, we found that the here for the first time described profound endogenous day/night rhythms in histone modifications in the hippocampus of WT-mice are markedly perturbed in Per1-mice. Concomitantly, both, in vivo recorded LTP, a cellular correlate for long-term memory, and hippocampal gene expression were significantly altered in the absence of Per1. Notably, these molecular perturbations in Per1-mice were accompanied by the loss of daytime-dependent differences in spatial working memory performance. Our data provide a molecular blueprint for a novel role of PER1 in temporally shaping the daytime-dependency of memory performance, likely, by gating CREB signaling, and by coupling to downstream chromatin remodeling
    corecore