62 research outputs found

    Transition in Hypersonic Boundary Layers: Role of Dilatational Waves

    Full text link
    Transition and turbulence production in a hypersonic boundary layer is investigated in a Mach 6 quiet wind tunnel using Rayleigh-scattering visualization, fast-response pressure measurements, and particle image velocimetry. It is found that the second instability acoustic mode is the key modulator of the transition process. The second mode experiences a rapid growth and a very fast annihilation due to the effect of bulk viscosity. The second mode interacts strongly with the first vorticity mode to directly promote a fast growth of the latter and leads to immediate transition to turbulence.Comment: 5 pages, 6 figure

    Ultimate boundary estimations and topological horseshoe analysis of a new 4D hyper-chaotic system

    Get PDF
    In this paper, we first estimate the boundedness of a new proposed 4-dimensional (4D) hyper-chaotic system with complex dynamical behaviors. For this system, the ultimate bound set Ω1 and globally exponentially attractive set Ω2 are derived based on the optimization method, Lyapunov stability theory and comparison principle. Numerical simulations are presented to show the effectiveness of the method and the boundary regions. Then, to prove the existence of hyper-chaos, the hyper-chaotic dynamics of the 4D nonlinear system is investigated by means of topological horseshoe theory and numerical computation. Based on the algorithm for finding horseshoes in three-dimensional hyper-chaotic maps, we finally find a horseshoe with two-directional expansions in the 4D hyper-chaotic system, which can rigorously prove the existence of the hyper-chaos in theory

    Peridynamic Model for the Numerical Simulation of Anchor Bolt Pullout in Concrete

    Get PDF
    Predictive simulation of anchor pullout from concrete structures is not only a serious problem in structural mechanics but also very important in structural design safety. In the finite element method (FEM), the crack paths or the points of crack initiation usually need to be assumed in advance. Otherwise, some special crack growth treatment or adaptive remeshing algorithm is normally used. In this paper, an extended peridynamic method was introduced to avoid the difficulties found in FEM, and its application on anchor bolt pullout in plain concrete is studied. In the analysis, the interaction between the anchor bolt and concrete is represented by a modified short-range force and an extended bond-level model for concrete is developed. Numerical analysis results indicate that the peak pullout load obtained and the crack branching of the anchoring system agreed well with the experimental investigations

    A gate-programmable van der Waals metal-ferroelectric-semiconductor memory

    Full text link
    Ferroelecticity, one of the keys to realize nonvolatile memories owing to the remanent electric polarization, has been an emerging phenomenon in the two-dimensional (2D) limit. Yet the demonstrations of van der Waals (vdW) memories using 2D ferroelectric materials as an ingredient are very limited. Especially, gate-tunable ferroelectric vdW memristive device, which holds promises in future neuromorphic applications, remains challenging. Here, we show a prototype gate-programmable memory by vertically assembling graphite, CuInP2S6, and MoS2 layers into a metal-ferroelectric-semiconductor architecture. The resulted devices exhibit two-terminal switchable electro-resistance with on-off ratios exceeding 105 and long-term retention, akin to a conventional memristor but strongly coupled to the ferroelectric characteristics of the CuInP2S6 layer. By controlling the top gate, Fermi level of MoS2 can be set inside (outside) of its band gap to quench (enable) the memristive behaviour, yielding a three-terminal gate programmable nonvolatile vdW memory. Our findings pave the way for the engineering of ferroelectric-mediated memories in future implementations of nanoelectronics

    Investigations of Carrier Mobility Properties in Multiple Silicon Gate-All-Around Nanowire MOSFETs

    No full text
    報告番号: 甲25308 ; 学位授与年月日: 2009-09-28 ; 学位の種別: 課程博士 ; 学位の種類: 博士(工学) ; 学位記番号: 博工第7152号 ; 研究科・専攻: 工学系研究科電子工学専

    A Novel Method to Analyze the Relationship between Thermoelectric Coefficient and Energy Disorder of Any Density of States in an Organic Semiconductor

    No full text
    In this work, a unified method is proposed for analyzing the relationship between the Seebeck coefficient and the energy disorder of organic semiconductors at any multi-parameter density of states (DOS) to study carrier transport in disordered thermoelectric organic semiconductors and the physical meaning of improved DOS parameters. By introducing the Gibbs entropy, a new multi-parameter DOS and traditional Gaussian DOS are used to verify this method, and the simulated result of this method can well fit the experiment data obtained on three organic devices. In particular, the impact of DOS parameters on the Gibbs entropy can also influence the impact of the energy disorder on the Seebeck coefficient

    マルチシリコンナノワイヤトランジスタにおけるキャリア移動度特性に関する研究

    No full text
    University of Tokyo (東京大学
    corecore