32 research outputs found

    Understanding PITX2-Dependent Atrial Fibrillation Mechanisms through Computational Models

    Get PDF
    From MDPI via Jisc Publications RouterHistory: accepted 2021-07-16, pub-electronic 2021-07-19Publication status: PublishedFunder: National Key Research and Development Program of China; Grant(s): 2019YFC0120100, 2019YFC0121907Funder: National Natural Science Foundation of China; Grant(s): 61901192Atrial fibrillation (AF) is a common arrhythmia. Better prevention and treatment of AF are needed to reduce AF-associated morbidity and mortality. Several major mechanisms cause AF in patients, including genetic predispositions to AF development. Genome-wide association studies have identified a number of genetic variants in association with AF populations, with the strongest hits clustering on chromosome 4q25, close to the gene for the homeobox transcription PITX2. Because of the inherent complexity of the human heart, experimental and basic research is insufficient for understanding the functional impacts of PITX2 variants on AF. Linking PITX2 properties to ion channels, cells, tissues, atriums and the whole heart, computational models provide a supplementary tool for achieving a quantitative understanding of the functional role of PITX2 in remodelling atrial structure and function to predispose to AF. It is hoped that computational approaches incorporating all we know about PITX2-related structural and electrical remodelling would provide better understanding into its proarrhythmic effects leading to development of improved anti-AF therapies. In the present review, we discuss advances in atrial modelling and focus on the mechanistic links between PITX2 and AF. Challenges in applying models for improving patient health are described, as well as a summary of future perspectives

    A Two-stage Method with a Shared 3D U-Net for Left Atrial Segmentation of Late Gadolinium-Enhanced MRI Images

    Get PDF
    Objective: This study was aimed at validating the accuracy of a proposed algorithm for fully automatic 3D left atrial segmentation and to compare its performance with existing deep learning algorithms. Methods: A two-stage method with a shared 3D U-Net was proposed to segment the 3D left atrium. In this architecture, the 3D U-Net was used to extract 3D features, a two-stage strategy was used to decrease segmentation error caused by the class imbalance problem, and the shared network was designed to decrease model complexity. Model performance was evaluated with the DICE score, Jaccard index and Hausdorff distance. Results: Algorithm development and evaluation were performed with a set of 100 late gadolinium-enhanced cardiovascular magnetic resonance images. Our method achieved a DICE score of 0.918, a Jaccard index of 0.848 and a Hausdorff distance of 1.211, thus, outperforming existing deep learning algorithms. The best performance of the proposed model (DICE: 0.851; Jaccard: 0.750; Hausdorff distance: 4.382) was also achieved on a publicly available 2013 image data set. Conclusion: The proposed two-stage method with a shared 3D U-Net is an efficient algorithm for fully automatic 3D left atrial segmentation. This study provides a solution for processing large datasets in resource-constrained applications. Significance Statement: Studying atrial structure directly is crucial for comprehending and managing atrial fibrillation (AF). Accurate reconstruction and measurement of atrial geometry for clinical purposes remains challenging, despite potential improvements in the visibility of AF-associated structures with late gadolinium-enhanced magnetic resonance imaging. This difficulty arises from the varying intensities caused by increased tissue enhancement and artifacts, as well as variability in image quality. Therefore, an efficient algorithm for fully automatic 3D left atrial segmentation is proposed in the present study

    RAS Dataset

    No full text
    <p>The current challenge in effectively treating atrial fibrillation (AF) stems from a limited understanding of the intricate structure of the human atria. The objective and quantitative interpretation of the right atrium (RA) in late gadolinium-enhanced magnetic resonance imaging (LGE-MRI) scans relies heavily on its precise segmentation. Leveraging the potential of artificial intelligence (AI) - based approaches for RA segmentation presents a promising solution. However, the successful implementation of AI in this context necessitates access to a substantial volume of annotated LGE-MRI images for model training. In this paper, we present a comprehensive 3D cardiac dataset comprising 100 high-resolution LGE-MRI scans, each meticulously annotated at the pixel level. The annotation process underwent rigorous standardization through crowdsourcing among a panel of medical experts, ensuring the accuracy and consistency of the annotations. Our dataset represents a significant contribution to the field, providing a valuable resource for advancing AI-based RA segmentation methods.</p&gt

    Mechanisms underlying the emergence of post-acidosis arrhythmia at the tissue level:A theoretical study

    Get PDF
    Acidosis has complex electrophysiological effects, which are associated with a high recurrence of ventricular arrhythmias. Through multi-scale cardiac computer modeling, this study investigated the mechanisms underlying the emergence of post-acidosis arrhythmia at the tissue level. In simulations, ten Tusscher-Panfilov ventricular model was modified to incorporate various data on acidosis-induced alterations of cellular electrophysiology and intercellular electrical coupling. The single cell models were incorporated into multicellular one-dimensional (1D) fiber and 2D sheet tissue models. Electrophysiological effects were quantified as changes of action potential profile, sink-source interactions of fiber tissue, and the vulnerability of tissue to the genesis of unidirectional conduction that led to initiation of re-entry. It was shown that acidosis-induced sarcoplasmic reticulum (SR) calcium load contributed to delayed afterdepolarizations (DADs) in single cells. These DADs may be synchronized to overcome the source-sink mismatch arising from intercellular electrotonic coupling, and produce a premature ventricular complex (PVC) at the tissue level. The PVC conduction can be unidirectionally blocked in the transmural ventricular wall with altered electrical heterogeneity, resulting in the genesis of re-entry. In conclusion, altered source-sink interactions and electrical heterogeneity due to acidosis-induced cellular electrophysiological alterations may increase susceptibility to post-acidosis ventricular arrhythmias

    Pro-arrhythmogenic effects of CACNA1C G1911R mutation in human ventricular tachycardia:Insights from cardiac multi-scale models

    No full text
    Mutations in the CACNA1C gene are associated with ventricular tachycardia (VT). Although the CACNA1C mutations were well identified in patients with cardiac arrhythmias, mechanisms by which cardiac arrhythmias are generated in such genetic mutation conditions remain unclear. In this study, we identified a novel mechanism of VT resulted from enhanced repolarization dispersion which is a key factor for arrhythmias in the CACNA1C G1911R mutation using multi-scale computational models of the human ventricle. The increased calcium influx in the mutation prolonged action potential duration (APD), produced steepened action potential duration restitution (APDR) curves as well as augmented membrane potential differences among different cell types during repolarization, increasing transmural dispersion of repolarization (DOR) and the spatial and temporal heterogeneity of cardiac electrical activities. Consequentially, the vulnerability to unidirectional conduction block in response to a premature stimulus increased at tissue level in the G1911R mutation. The increased functional repolarization dispersion anchored reentrant excitation waves in tissue and organ models, facilitating the initiation and maintenance of VT due to less meandering rotor tip. Thus, the increased repolarization dispersion caused by the G1911R mutation is a primary factor that may primarily contribute to the genesis of cardiac arrhythmias in Timothy Syndrome
    corecore