6 research outputs found

    Основні підходи до розроблення дизайну упаковки

    Get PDF
    Упаковка – останній призов, який бачить покупець, і останній шанс переконати його купити товар [1], тому над розробленням цікавого, оригінального дизайну упаковки працює ціла армія професіоналів. Дизайн упаковки включає гармонічну сукупність таких елементів, як: форма, матеріал, розміри, якість виготовлення, вид друку, кольори

    Sequence-Specific Mapping of the Interaction between Urea and Unfolded Ubiquitin from Ensemble Analysis of NMR and Small Angle Scattering Data

    No full text
    The molecular details of how urea interacts with, and eventually denatures proteins, remain largely unknown. In this study we have used extensive experimental NMR data, in combination with statistical coil ensemble modeling and small-angle scattering, to analyze the conformational behavior of the protein ubiquitin in the presence of urea. In order to develop an atomic resolution understanding of the denatured state, conformational ensembles of full-atom descriptions of unfolded proteins, including side chain conformations derived from rotamer libraries, are combined with random sampling of explicit urea molecules in interaction with the protein. Using this description of the conformational equilibrium, we demonstrate that the direct-binding model of urea to the protein backbone is compatible with available experimental data. We find that, in the presence of 8 M urea, between 30 and 40% of the backbone peptide groups bind a urea molecule, independently reproducing results from a model-free analysis of small-angle neutron and X-ray scattering data. Crucially, this analysis also provides sequence specific details of the interaction between urea and the protein backbone. The pattern of urea-binding along the amino-acid sequence reveals a higher level of binding in the central part of the protein, a trend which resembles independent results derived from chemical shift mapping of the urea–protein interaction. Together these results substantiate the direct-binding model and provide a framework for studying the physical basis of interactions between proteins and solvent molecules

    Mapping the Potential Energy Landscape of Intrinsically Disordered Proteins at Amino Acid Resolution

    No full text
    Intrinsically disordered regions are predicted to exist in a significant fraction of proteins encoded in eukaryotic genomes. The high levels of conformational plasticity of this class of proteins endows them with unique capacities to act in functional modes not achievable by folded proteins, but also places their molecular characterization beyond the reach of classical structural biology. New techniques are therefore required to understand the relationship between primary sequence and biological function in this class of proteins. Although dependences of some NMR parameters such as chemical shifts (CSs) or residual dipolar couplings (RDCs) on structural propensity are known, so that sampling regimes are often inferred from experimental observation, there is currently no framework that allows for a statistical mapping of the available Ramachandran space of each amino acid in terms of conformational propensity. In this study we develop such an approach, combining highly efficient conformational sampling with ensemble selection to map the backbone conformational sampling of IDPs on a residue specific level. By systematically analyzing the ability of NMR data to map the conformational landscape of disordered proteins, we identify combinations of RDCs and CSs that can be used to raise conformational degeneracies inherent to different data types, and apply these approaches to characterize the conformational behavior of two intrinsically disordered proteins, the K18 domain from Tau protein and N<sub>TAIL</sub> from measles virus nucleoprotein. In both cases, we identify the enhanced populations of turn and helical regions in key regions of the proteins, as well as contiguous strands that show clear and enhanced polyproline II sampling

    Modulation of Structure and Dynamics by Disulfide Bond Formation in Unfolded States

    No full text
    During oxidative folding, the formation of disulfide bonds has profound effects on guiding the protein folding pathway. Until now, comparatively little is known about the changes in the conformational dynamics in folding intermediates of proteins that contain only a subset of their native disulfide bonds. In this comprehensive study, we probe the conformational landscape of non-native states of lysozyme containing a single native disulfide bond utilizing nuclear magnetic resonance (NMR) spectroscopy, small-angle X-ray scattering (SAXS), circular dichroism (CD) data, and modeling approaches. The impact on conformational dynamics varies widely depending on the loop size of the single disulfide variants and deviates significantly from random coil predictions for both NMR and SAXS data. From these experiments, we conclude that the introduction of single disulfides spanning a large portion of the polypeptide chain shifts the structure and dynamics of hydrophobic core residues of the protein so that these regions exhibit levels of order comparable to the native state on the nanosecond time scale

    Modulation of Structure and Dynamics by Disulfide Bond Formation in Unfolded States

    No full text
    During oxidative folding, the formation of disulfide bonds has profound effects on guiding the protein folding pathway. Until now, comparatively little is known about the changes in the conformational dynamics in folding intermediates of proteins that contain only a subset of their native disulfide bonds. In this comprehensive study, we probe the conformational landscape of non-native states of lysozyme containing a single native disulfide bond utilizing nuclear magnetic resonance (NMR) spectroscopy, small-angle X-ray scattering (SAXS), circular dichroism (CD) data, and modeling approaches. The impact on conformational dynamics varies widely depending on the loop size of the single disulfide variants and deviates significantly from random coil predictions for both NMR and SAXS data. From these experiments, we conclude that the introduction of single disulfides spanning a large portion of the polypeptide chain shifts the structure and dynamics of hydrophobic core residues of the protein so that these regions exhibit levels of order comparable to the native state on the nanosecond time scale

    Modulation of Structure and Dynamics by Disulfide Bond Formation in Unfolded States

    No full text
    During oxidative folding, the formation of disulfide bonds has profound effects on guiding the protein folding pathway. Until now, comparatively little is known about the changes in the conformational dynamics in folding intermediates of proteins that contain only a subset of their native disulfide bonds. In this comprehensive study, we probe the conformational landscape of non-native states of lysozyme containing a single native disulfide bond utilizing nuclear magnetic resonance (NMR) spectroscopy, small-angle X-ray scattering (SAXS), circular dichroism (CD) data, and modeling approaches. The impact on conformational dynamics varies widely depending on the loop size of the single disulfide variants and deviates significantly from random coil predictions for both NMR and SAXS data. From these experiments, we conclude that the introduction of single disulfides spanning a large portion of the polypeptide chain shifts the structure and dynamics of hydrophobic core residues of the protein so that these regions exhibit levels of order comparable to the native state on the nanosecond time scale
    corecore