30 research outputs found

    ScalAna: Automating Scaling Loss Detection with Graph Analysis

    Full text link
    Scaling a parallel program to modern supercomputers is challenging due to inter-process communication, Amdahl's law, and resource contention. Performance analysis tools for finding such scaling bottlenecks either base on profiling or tracing. Profiling incurs low overheads but does not capture detailed dependencies needed for root-cause analysis. Tracing collects all information at prohibitive overheads. In this work, we design ScalAna that uses static analysis techniques to achieve the best of both worlds - it enables the analyzability of traces at a cost similar to profiling. ScalAna first leverages static compiler techniques to build a Program Structure Graph, which records the main computation and communication patterns as well as the program's control structures. At runtime, we adopt lightweight techniques to collect performance data according to the graph structure and generate a Program Performance Graph. With this graph, we propose a novel approach, called backtracking root cause detection, which can automatically and efficiently detect the root cause of scaling loss. We evaluate ScalAna with real applications. Results show that our approach can effectively locate the root cause of scaling loss for real applications and incurs 1.73% overhead on average for up to 2,048 processes. We achieve up to 11.11% performance improvement by fixing the root causes detected by ScalAna on 2,048 processes.Comment: conferenc

    Collaborative Heterogeneity-Aware OS Scheduler for Asymmetric Multicore Processors

    Get PDF
    Funding: This work is supported in part by the China Postdoctoral Science Foundation (Grant No. 2020TQ0169), the ShuiMu Tsinghua Scholar fellowship (2019SM131), National Key R&D Program of China (2020AAA0105200), National Natural Science Foundation of China (U20A20226), Beijing Natural Science Foundation (4202031), Beijing Academy of Artificial Intelligence BAAI), the UK EPSRC grants Discovery: Pattern Discovery and Program Shaping for Manycore Systems (EP/P020631/1). This work is also supported by the Royal Academy of Engineering under the Research Fellowship scheme.Asymmetric multicore processors (AMP) offer multiple types of cores under the same programming interface. Extracting the full potential of AMPs requires intelligent scheduling decisions, matching each thread with the right kind of core, the core that will maximize performance or minimize wasted energy for this thread. Existing OS schedulers are not up to this task. While they may handle certain aspects of asymmetry in the system, none can handle all runtime factors affecting AMPs for the general case of multi-threaded multi-programmed workloads. We address this problem by introducing COLAB, a general purpose asymmetry-aware scheduler targeting multi-threaded multi-programmed workloads. It estimates the performance and power of each thread on each type of core and identifies communication patterns and bottleneck threads. With this information, the scheduler makes coordinated core assignment and thread selection decisions that still provide each application its fair share of the processor’s time. We evaluate our approach using both the GEM5 simulator on four distinct big.LITTLE configurations and a development board with ARM Cortex-A73/A53 processors and mixed workloads composed of PARSEC and SPLASH2 benchmarks. Compared to the state-of-the art Linux CFS and AMP-aware schedulers, we demonstrate performance gains of up to 25% and 5% to 15% on average,together with an average 5% energy saving depending on the hardware setup.PostprintPeer reviewe

    A New Mechanism of Canopy Effect in Unsaturated Freezing Soils

    No full text
    Canopy effect refers to the phenomenon where moisture accumulates underneath an impervious cover. Field observation reveals that canopy effect can take place in relatively dry soils where the groundwater table is deep and can lead to full saturation of the soil immediately underneath the impervious cover. On the other hand, numerical analysis based on existing theories of heat and mass transfer in unsaturated soils can only reproduce a minor amount of moisture accumulation due to an impervious cover, particularly when the groundwater table is relatively deep. In attempt to explain the observed canopy effect in field, this paper proposes a new mechanism of moisture accumulation in unsaturated freezing soils: vapour transfer in such a soil is accelerated by the process of vapour-ice desublimation. A new approach for modelling moisture and heat movements is proposed, in which the phase change of evaporation, condensation and de-sublimation of vapor flow are taken into account. The computed results show that the proposed model can indeed reproduce the unusual moisture accumulation observed in relatively dry soils. The results also demonstrate that soil freezing fed by vapour transfer can result in a water content close to full saturation. Since vapour transfer is seldom considered in geotechnical design, the canopy effect deserves more attention during construction and earth works in cold and arid regions

    A Numerical Model of Vapour Transfer and Phase Change in Unsaturated Freezing Soils

    No full text
    In recent studies, vapour transfer is reported to lead to remarkable frost heave in unsaturated soils, but how to better model this process has not been answered. In order to avoid the great uncertainty caused by the phase change term of vapour-water-ice in the numerical iteration process, a new numerical model is developed based on the coupled thermal and hydrological processes. The new model avoids using the local equilibrium assumption and the hydraulic relations that accounts for liquid water flow, which provides a new way for the water-heat coupling movement problem. The model is established by using COMSOL Multiphysics, which is a multiphysics simulation software through finite element analysis. The model is evaluated by comparing simulated results with data from column freezing experiments for unsaturated coarse-grained soils. Simulated values of the total water content compare well with experimental values. The model is proved to be applicable and numerically stable for a high-speed railway subgrade involving simultaneous heat and moisture transport. An agreement can be found between the predicted and measured frost/thawed depth and soil moisture profiles, demonstrating that the model is able to simulate rapidly changing boundary conditions and nonlinear water content profiles in the soil

    Petroleum contamination evaluation and bacterial community distribution in a historic oilfield located in loess plateau in China

    No full text
    In this study, petroleum contamination and the corresponding distribution of bacterial communities in the Yanchang oilfield, a historic oilfield in north China was evaluated. Surface soil samples and river sediment samples near the oilfield were collected and analyzed for the total petroleum hydrocarbons (TPHs), n-alkanes, polycyclic aromatic hydrocarbons (PAHs), bacterial biodiversity, and environmental factors. Petroleum fingerprinting analysis and redundancy analysis (RDA) were then conducted to evaluate the petroleum contamination and the bacterial community structure. The results of these studies showed that the petroleum contamination in the study area was high in TPHs, present at the levels in the ranges 1678-6748, 1189-2237, and 1089-1728 mg/kg in the wastelands, sediments, and farmlands, respectively. "Chemical fingerprint" indicators (e.g., carbon preference index near 1 and pristane/phytane < 10) indicate that petroleum pollution in the wasteland near the oil wells migrated to the farmlands and rivers, and deep biodegradation occurred in these places. The microbial diversity analysis identified many genus, including Stenotrophomonas, Arenimonas, Sphingomonas, Aquabacterium, Acinetobacter, Comamonas and Pseudomonas, containing many known petroleum degrading species. The RDA results indicated that moisture was the most significant factor shaping the local bacterial community, followed by the total nitrogen, total organic carbon, and total phosphorus contents, and pH. This study demonstrated an approach for providing comprehensive information to support evaluation and remediation of regional petroleum contamination

    Analysis on the Triaxial Shear Behavior and Microstructure of Cement-Stabilized Clay Reinforced with Glass Fibers

    No full text
    A series of triaxial compression tests were conducted to investigate the influence of the fiber content and confining pressure on the shearing characteristics of cement-stabilized clay reinforced with glass fibers. The glass fiber contents were 0, 1‰, 2‰, 3‰, and 4‰ by weight of the dry soil. The stress strain and volume change behavior, shear strength, and energy absorption of the test specimen were obtained. The results indicate that the inclusion of glass fibers can increase the shear strength, inhibit the volumetric dilation of the test specimen, and improve its brittle behavior. The cohesion of the cement-stabilized clay reinforced with 4‰ glass fiber content is 2.8 times greater than that of the cement-stabilized clay. The effect of the fiber content on the friction angle is not obvious. It is found that the glass fiber reinforcement is more substantial under a low confining pressure. The scanning electron microscopy test results show that the surface of the glass fiber is wrapped with cement hydrate crystals, which increases the bite force and friction between the fiber and the soil particles. A single fiber is similar to an anchor in the soil, which enhances the mechanical properties of the cement-stabilized clay reinforced with fibers
    corecore