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Collaborative Heterogeneity-Aware OS
Scheduler for Asymmetric Multicore Processors

Teng Yu, Runxin Zhong, Vladimir Janjic, Pavlos Petoumenos,
Jidong Zhai, Hugh Leather, John Thomson

Abstract—Asymmetric multicore processors (AMP) offer multiple types of cores under the same programming interface. Extracting the
full potential of AMPs requires intelligent scheduling decisions, matching each thread with the right kind of core, the core that will
maximize performance or minimize wasted energy for this thread. Existing OS schedulers are not up to this task. While they may
handle certain aspects of asymmetry in the system, none can handle all runtime factors affecting AMPs for the general case of
multi-threaded multi-programmed workloads.
We address this problem by introducing COLAB, a general purpose asymmetry-aware scheduler targeting multi-threaded
multi-programmed workloads. It estimates the performance and power of each thread on each type of core and identifies
communication patterns and bottleneck threads. With this information, the scheduler makes coordinated core assignment and thread
selection decisions that still provide each application its fair share of the processor’s time.
We evaluate our approach using both the GEM5 simulator on four distinct big.LITTLE configurations and a development board with
ARM Cortex-A73/A53 processors and mixed workloads composed of PARSEC and SPLASH2 benchmarks. Compared to the
state-of-the art Linux CFS and AMP-aware schedulers, we demonstrate performance gains of up to 25% and 5% to 15% on average,
together with an average 5% energy saving depending on the hardware setup.

Index Terms—Asymmetric Multicore Processors, Operating System, Scheduling, Performance Model, Energy Efficiency

F

1 INTRODUCTION

Balancing between performance and energy consumption
is one of the central issues in designing new processors as
over 90% of all processors end up in embedded energy-
limited devices, such as smartphones and IoT sensors. Het-
erogeneous systems, that combine different processor types,
provide energy-efficeint processing for different types of
workloads [26]. The first heterogeneous systems combined
processors with different Instruction Set Architectures (ISA).
More recently, single-ISA asymmetric multicore processors
(AMPs) have gained popularity. Their advantages are obvi-
ous - because the processors share the same architecture, the
decisions about what task/thread to map to what proces-
sor/core can be made at runtime by the OS thread scheduler,
guided not only by the characteristics of the workload, but
also by the runtime load of individual processors/cores. On
the other hand, this introduces an extra degree of freedom
to the scheduling problem, making it even more complex.
As a result, efficient AMP scheduling has attracted a lot of
attention in the literature [23]. The three main factors influ-
encing the decisions of a general purpose AMP scheduler
on a heterogeneous system are:

Core sensitivity: Each type of a core is designed to
handle different kinds of workloads. For example, in
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ARM big.LITTLE systems, big cores are mainly used for
performance-critical workloads or workloads with Instruc-
tion Level Parallelism (ILP). Executing other kinds of work-
loads on them would not improve the performance signif-
icantly, but would significantly increase energy consump-
tion. To build an efficient AMP scheduler, we need to predict
which threads are suitable for which kind of core.

Thread criticality: Executing a single thread of a work-
load faster does not always translate into better performance
of the whole workload. If the threads of an application are
unbalanced or are executed at different speeds, e.g. because
different threads run on different types of cores, the applica-
tion will run only as fast as its slowest or most critical thread
(the thread that blocks most of the other threads). A good
AMP scheduler would accelerate these threads as much as
possible, regardless of core sensitivity.

Fairness: In multiprogrammed workloads, accelerating
an individual application in isolation is not enough if it
penalizes other applications. Ideally, we need to have fair
scheduling that will balance the negative impact of resource
sharing uniformly across all applications. In homogeneous
sytems, this is easily achieved by giving each application a
fixed-size time slice on a CPU in a round-robin way. AMPs
make this simple solution unworkable. The same amount
of CPU time on different core types results in completely
different amounts of work performed, due to difference in
performance of each core.

Prior research [7], [8], [11], [14], [28] has explored bottle-
neck and critical section acceleration, others have examined
fairness [21], [22], [30], [31], [35], or core sensitivity [1], [6],
[20]. More recent studies [15]–[17], [25], [29] have improved
on previous work by optimizing for multiple factors. Such
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Fig. 1. Motivating Example: Multi-threaded multiprogrammed workload
on asymmetric multicore processors with one big core Pb and one little
core Pl. Controlling only core affinity results in sub-optimal scheduling
decisions.

schedulers are good only for specific kinds of workloads.
Only one previous work, WASH [13], can handle general
workloads composed of multiple single- or multi-threaded
applications with potentially unbalanced threads, and with
a total number of threads that may be higher than the
number of cores. While a significant step forward, WASH
only controls core affinity and does so in a limited way. The
former means that we cannot handle core allocation and
thread dispatching in a holistic way to speed up the most
critical threads. The latter means that WASH only really
controls the scheduling domain for each thread, i.e. the
group of cores that the thread is allowed to use. The actual
core for each thread is chosen by the underlying Linux CFS
scheduler with a heuristic that ignores heterogeneity and
thread criticality.

In this paper, we introduce COLAB, an OS schedul-
ing policy for asymmetric multicore processors that makes
coordinated decisions targeting all three main factors in
thread scheduling - core sensitivity, thread critically and
fairness. Our scheduler uses three collaborating heuristics
to drive decisions about mapping threads to cores, each of
the heuristics foucing primarly on optimisation of one of the
factors. Collectively, these multi-factor heuristics result in
better thread schedules compared to the Linux and WASH
schedulers, therefore improving both performance and en-
ergy consumption.

The main contributions of our work are:

• We present the design of a novel AMP-aware OS
scheduler that targets general multi-threaded mul-
tiprogrammed workloads. The scheduler is based on
a set of novel collaborative heuristics for addressing
core sensitivity, thread criticality, fairness and energy
efficiency.

• We present an implementation of the COLAB sched-
uler both on a real chip and in the simulation set-
tings.

• We evaluate the effectiveness of the COLAB sched-
uler on a range of standard workloads, demonstrat-

ing improvements of up to 25% and 21% (11% and
5% on the average) in the turnaround time compared
to the Linux CFS and WASH schedulers in the GEM5
simulator and up to 27% and 10% performance gain
(together with 5% energy saving) compared to the
ARM GTS and WASH scheduler on a real big.LITTLE
development board.

Motivating Example
To demonstrate the problem, consider the example shown in
Figure 1, with an AMP system that has a high performance
big core, Pb, and a low performance little core, Pl. Three
applications are being executed - α and β that have two
threads, and γ that is single threaded. The first thread of
each application, α1 and β1, blocks the second thread of
their application, α2 and β2, respectively. α1 and γ enjoy a
high speedup when executed on Pb. WASH [13], the exist-
ing state-of-the-art multi-factor heuristic, would be inclined
to assign the high speedup thread and the two blocking
threads to the big core. The thread selector of Pb has no
information about the criticality of the threads assigned to it,
so the order of execution depends on the underlying Linux
scheduler. A much better solution is possible if we control
both core allocation and thread selection in a coordinated,
AMP-aware way. In this case, we map the two threads that
benefit the most from the big core, γ and α1, to Pb, while
we map the other bottleneck thread, β1, to Pl. This will not
impact the overall performance of β. The thread selector
knows β1 is a bottleneck thread and executes it immediately.
So, what we lose in execution speed for β1, we gain in not
having to wait for CPU time. Similarly, this coordinated
policy guarantees that α1 will be given priority over γ.

2 BACKGROUND AND RELATED WORK

TABLE 1
Qualitative Analysis on Related Work

Approaches Core
Sens.

Fair-
ness

Bottle-
neck

Collabo-
rative

Kumar, et al [20] X
Li, et al [21] X
Suleman, et al. [28] X
Saez, et al. [25] X X
Craeynest, et al. [29] X X
Cao, et al. [6] X
Joao, et al [15] X X
ARM [12] X
Kim, et al [17] X X
Jibaja, et al [13] X X X
COLAB X X X X

Single-ISA heterogeneous processors allow for more ef-
ficient processing by using the right kind of core for each
workload, while still relying on a single contract between
hardware and software [18], [20]. The problem is decid-
ing what ”the right kind of core” is. For general purpose
systems, where the applications sharing the computational
resources are not known at design time and change rapidly,
the optimal assignment of threads cannot be made statically.
A scheduler has to make this decision at runtime.

The most direct approach, core sensitivity, assigns threads
to cores where they will experience the highest speedup.
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At its simplest, this might mean measuring the number
of committed instructions per second on all core types
and choosing the highest. In most cases though, this is
inefficient. Existing approaches use performance models to
predict the speedup from moving a thread to another core
without having to execute the thread on that core. They
first measure certain aspects of the thread’s execution on
its current core, ILP and LLC miss rates in Saez et al. [25],
CPI stack, ILP, and MLP in Craeynest et al. [30], empirically
selected performance counters in Jibaja et al [13]. Then they
use the performance model to estimate the effect of moving
the thread elsewhere. The threads most sensitive to their
placement are assigned to their preferred core type, the rest
are assigned to any type of core.

Whole-program performance depends not only on ac-
celerating core sensitive threads but also on accelerating
the threads that slow down the program, the bottleneck and
critical threads. For example, previous work has shown the
benefit from accelerating Amdahl’s serial bottlenecks [19]
and critical code sections [28]. Joao et al. [14], [15] further
showed that functions that cause threads to wait above a
certain threshold should be accelerated. Jibaja et al. [13]
similarly proposed finding bottleneck Java threads by mea-
suring waiting time on contended locks.

On top of accelerating core sensitive and bottleneck
threads, a general purpose AMP scheduler needs to maintain
fairness, that is to balance the processing resources given to
each thread and process when they have to share these re-
sources. Traditional fair schedulers balance only processing
time, assuming that time is equally important on all cores.
This is not true for AMPs. Li et al [22] introduced some
sense of fairness by loading each core proportionally to its
processing power. Craeynest et al. [29] instead proposed
an equal progress scheduler. It uses a performance model
to express the progress of every thread in terms of the
time required for the same progress on the small core. The
scheduler then prioritizes threads so that the small core
equivalent time of all threads is the same. Other heuristics
have tried to maximize fairness on AMPs [17], [31], [35] but
for restricted scenarios.

Only a small number of schedulers are designed to han-
dle the general case of multi-threaded multi-programmed
workloads. ARM Global Task Scheduler (GTS) [12] focuses
on energy efficiency. Threads run on low power cores unless
they are servicing interrupts or have a high load. Core sensi-
tivity is not a concern, while bottlenecks are only accelerated
when they happen to be caused by high load threads. Kim
and Huh [17] focuses only on core sensitivity and fairness.
Inter-thread communication is not a concern. WASH [13] is
to our knowledge the only existing scheduler that handles
core sensitivity, bottlenecks, and maintains fairness. Still,
it is limited to only controlling affinity and requires the
OS scheduler to independently dispatch threads to cores.
As we see later, this lack of collaboration between the two
subsystems is sub-optimal. In the rest of this paper, we use a
WASH-like implementation that relies on the baseline Linux
scheduler as our state-of-the-art. A qualitative comparison
of the related work is shown in Table 1.

Fig. 2. System Overview

Fig. 3. A diagram of Performance Factors and Relationships with
Scheduling Functions

3 SYSTEM OVERVIEW

We provide a high level COLAB system overview as shown
in Figure 2. The system is divided into a runtime scheduling
process and an offline modelling processes. The runtime
scheduler is built inside OS kernel and composed of i) a core
allocator to handle fairness and core sensitivity; ii) a thread
selector to achieve bottleneck acceleration; and, iii) machine
learning based runtime models, which predicate speedup
and power consumption of threads on heterogeneous cores.
The offline modelling processing is applied to construct
runtime models by offline training.

The main novelty of COLAB scheduler is that it can
handle multiple runtime factors (core sensitivity, bottleneck
acceleration and fairness) in a collaborative way to achieve
high system performance and energy efficiency. To easy
understand the runtime collaboration, we first analyze the
performance impact of multiple runtime factors and their
relationship with different scheduler components. We then
discuss how to build the scheduler which addresses these
performance problems in a coordinated way. After that,
we present the detailed design and implementation of the
proposed COLAB scheduler, beginning from the supporting
offline modelling process to the runtime scheduling process.
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4 RUNTIME ANALYSIS

Figure 3 shows sharing of information between the core allo-
cator and the thread selector in addressing the runtime per-
formance factors. In this section, we analyse the relationship
between the runtime factors and the scheduler components
that address them before analysing how the information
between the scheduler components is exchanged.

4.1 Runtime Factors Analysis
Core Allocator: AMP-aware core allocators are mainly
guided by the core sensitivity factors of threads, which
quantify how much performance benefit would migrating a
thread from a little core to a big core bring. Migrating a high-
speedup thread (which enjoys large speedups on big cores)
from a little core to a big core will generally provide more
benefit than migrating a low-speedup thread. However, taking
into account also the bottleneck factor, which quantifies how
much the thread blocks other threads, reveals problems with
this heuristic on multiprogrammed workloads. Previous
approaches [13] simply combine the predicted bottleneck
acceleration and speedup together. This can result in sub-
optimal scheduling decisions where both bottleneck threads
and high speedup threads accumulate in the runqueues of
big cores, as described in the motivating example. A better
core allocation policy would avoid a simple combination
of bottleneck acceleration and speedup, focusing instead
on a collaborative environment where big cores focus on
high-speedup bottleneck threads and little cores handle low-
speedup bottleneck threads without additional migration.
Furthermore, core allocators attempt to achieve relative
fairness on AMPs by efficiently sharing heterogeneous hard-
ware and avoiding leaving resources idle as much as possi-
ble. Simply mapping ready threads uniformly over different
types of cores can not achieve true fairness as different types
of cores end up having different number of threads priori-
tized on them. Therefore, a hierarchical allocation should be
applied to guarantee the overall fairness, which avoids the
need to frequently migrate threads to empty runqueues.

Thread Selector: The thread selector decides which thread
from the runqueue of each core would be executed next.
The thread selector usually prioritizes the bottleneck threads
in order to avoid performance penalty from threads being
blocked for too long. In a multi-thread multiprogram en-
vironment, multiple bottleneck threads from different pro-
grams may need to be accelerated simultaneously. Instead
of simply detecting the bottleneck threads and assigning
them all to big cores, as the previous bottleneck acceleration
schedulers do [13]–[15], the thread selector needs to make
collaborative decisions – ideally, both big cores and little
cores would simutaneously run the bottleneck threads. Core
sensitivity is usually unimportant to the thread selector
and the decisions it makes are guided solely by bottleneck
acceleration. One exception is when the runqueue of a big
core is empty and the thread selector is invoked. Only in
this case the speedup factors from core sensitivity of ready
threads should be considered. Big cores may even preempt
the execution of threads on little cores when necessary.
Finally, the thread selector is also concerned with fairness.
Scaling time slice of threads by updating the time interval
of thread selector has been shown to guarantee the equal

Fig. 4. Coordinated Runtime Scheduling by Multi-factor Collaboration

progress of threads and achieve fairness in multi-threaded
single-program workloads [29]. Problems occur with multi-
threaded multi-program workloads. Simply ensuring equal
progress of all threads is not enough is not enough to guar-
antee fairness accross programs. The thread selector should
ensure that each individual program progresses equally.
Using both big and little cores for bottleneck acceleration
provides an opportunity for this. The thread selector makes
attempt to ensure fairness across programs by accelerating
bottleneck threads from all of them as soon as possible.

4.2 Runtime Collaboration
To address the problems detailed above, we designed a
coordinated multi-factor scheduler in which the core al-
locator and the thread selector collaborate to achieve a
good tradeoff between performance and energy consump-
tion while also ensuring fairness. The flowchart of our
model is shown in Figure 4. Collaboration is facilitated by
periodically classifying (using labels) ready threads into two
different categories, based on runtime models of speedup
prediction and bottleneck identification:

Labels for Core Allocation: Threads with high predicted
speedup on big cores will be labeled as high priority on
big cores. Threads with both low predicted speedup and
blocking levels, i.e. non-critical threads, will obtain high
priority on little cores (and low priority on big cores).
Remaining threads obtain equal priority on either big or
little cores – these threads can then be allocated freely to
balance the load of cores.

Labels for Thread Selection: Threads with high block-
ing level will be labeled as high priority for local thread
selection. The same priority will be given to these threads
regardless of whether they are executed on a big or little
core. The label nevertheless records the type of the current
core – threads always have priority to be selected by the
same type of cores if there exists a core of the same type
with an empty runqueue. Running threads on little cores
are also labeled as they may be preempted to migrate and
execute on big cores when suited, but running threads will
never have priority over waiting ready threads.

After the labeling process, fairness, core sensitivity and
bottleneck acceleration are represented by labels on threads
and can be handled by either the core allocator, the thread
selector or both together. Based on this coordinated model,
the core allocator and thread selector handle different pri-
ority queues from the set of ready threads – their decisions
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(a) Abstract ARMv8 PMU Selection Process
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(c) Performance and Energy Models Validation
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Fig. 5. ARMv8 Offline Performance and Energy Modelling

are not greedy on a mixed multi-factor ranking like WASH.
Instead, they provide a collaborative schedule. Another
important issue handled by the collaborative multi-factor
model is to ensure equal-progress of threads as shown in the
upper-right corner of Figure 4. Instead of interfering with
the priority and decisions of thread selection, we achieve
equal progress in threads by our scaled time slice approach,
based on the predicted speedup value of threads running
on big cores. The slices of threads on big cores are relative
shorter than on little cores. The thread selection function is
triggered more often to swap executing threads on big cores,
which guarantees the relative equal-progress of threads ex-
ecuted on all cores. The runtime model periodically extracts
the performance counters, which represents the current ex-
ecution environment of multi-threaded multi-programmed
workloads on the AMPs. The model then computes the
updated runtime factors, including the predicated speedup
value and blocking counts. This information is attached to
the threads and reported back to the multi-factor labeler for
next round. We present our runtime implementations in the
next section.

5 COLAB SCHEDULER DESIGN AND IMPLEMEN-
TATION

This section explores the design and implementation of
COLAB inside the Linux kernel. We describe our perfor-
mance and energy models, our modifications of the kernel
to support COLAB, and finally the scheduling algorithm
itself, including its runtime overheads.

5.1 Offline Performance and Energy Modelling

The decisions of our Core Allocator are primarily driven by
core sensitivity. To predict whether a thread is core sensitive
or not, we develop a machine learned performance model
similar to the ones used in previous works in this area [13],
[25], [29]. The model is constructed offline once and is kept
purposefully simple, a linear regression model with seven
parameters, to minimize the runtime overhead.

The abstract offline PMU selection process is shown in
Fig. 5(a). The training data we collect are execution time,
energy consumption, and event counts from all performance
monitor units (PMU). We run each training application in
isolation under two different configurations, first on the
little core cluster and then the big core cluster of our evalua-
tion system. We ignore the PMUs for which their value keep
to be zero, such as SW_INCR (Instruction architecturally
executed, Condition code check pass, software increment).

Since we only have access to seven PMUs at any given
moment, we repeatedly execute each application while col-
lecting different PMUs, until we have reliable information
for all of them. At the end of this process, we have per-
formance event counts, performance scaling between big
and little cores, and energy scaling between big and little
cores for 14 programs. Through Principal Component Anal-
ysis (PCA) [32], we select the six performance events that
correlate the most with performance and energy scaling.
For example, it is easy to know that the performance and
energy will be more dominated by the total data move-
ment than some branch behaviours. As a result, although
BR_IMMED_RETIRED is a meaningful PMU which counts
all immediate branch instructions that are architecturally
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executed, but it is not selected after the PCA process as there
are more important PMUs such as L1D_CACHE_REFILL
(L1 data cache refill) and L2_CACHE (L2 data cache access).
Finally, we use linear regression to associate the six selected
events, as well as the clock cycle count, with performance
and energy scaling. This results in the two models shown in
Table 5(b).

We validate the accuracy of our trained models on each
benchmark as shown in Fig. 5(c). The average error across
all benchmarks is around 7% for performance scaling pre-
diction and around 1.5% for big core energy consumption
prediction.

5.2 Runtime Supporting Techniques

Bottleneck Identification: On modern Linux systems thread
synchronization primitives are almost always implemented
on top of kernel futexes, regardless of the threading li-
brary used. Futex-based mechanisms use a single atomic
instruction in user space to acquire or release the fu-
tex, if it is uncontested. Otherwise, it calls the kernel
which forces the thread to sleep or wakes up sleep-
ing threads respectively. This means that monitoring the
blocking patterns between threads requires instrumenting
only this interface. Right before an active thread starts
waiting on a futex, in futex_wait_queue_me() and
futex_lock_pi(), we record the current time and store
it in the thread’s task_struct. We mirror this with code
right before a waiting task is woken up, in wake_futex()
and wake_futex_pi(). At this point we calculate the
length of waiting time for the thread and we accumulate
it in a field of the task_struct of the thread releasing the
futex. This enables us to measure the cumulative time each
thread has caused other threads to wait. This is our thread
criticality metric for the rest of the paper.

Speedup based Scale-slice Preemption: The default pre-
emption mechanism of Linux is triggered every time a new
task in enqueued at which point it checks whether the
virtual runtime vruntime of the incoming task is significantly
lower than that of the running task. If this is the case,
sharing the processing time fairly requires preempting the
running task. While our approach keeps this mechanism
intact, we modify vruntime so that equal vruntimes repre-
sent equal progress in an AMP system instead of just equal
runtime. We do this in the default preemption function
wakeup_preempt_entity(). If the triggering core is a
big one, then the vruntime of the task is divided by the
model predicted speedup for the task. This is equivalent
to predicting the vruntime required to achieve the same
progress on a little core.

5.3 Scheduling Algorithm Implementation

We implement our scheduling algorithm, shown in
Figure 5.3, by overriding the default Linux task se-
lector pick_next_task_fair() and core allocator
select_task_rq_fair(). In line with standard Linux
notation, we use rq and cur to represent runqueue and
the current task of a core, respectively. In the following
paragraphs, we describe the two main functions as well as
an energy-aware extension.

core alloctor (thread struct t):
if t.high speedup

return rr allocator (big cores)
if t.low speedup & t.low block

return rr allocator (little cores)
else return rr allocator (cores)

thread selector (core struct c):
if !empty(c.rq)

return max block (c.rq)
if !empty(c.sched domain.rq)

return max block (c.sched domain.rq)
if c.cpu mask == big

return max block (c.sched domain little.cur)
else return idle

Fig. 6. Collaborative Multi-factor Scheduler Algorithm

core alloctor e(thread struct t):
if t.high hyper

return rr allocator (big cores)
if t.low hyper & t.low block

return rr allocator (little cores)
else return rr allocator (cores)

Fig. 7. Energy-aware COLAB Extension Algorithm

Hierarchical Core Allocator: The core allocator’s role is
to assign newly ready threads to core runqueues. Threads
become ready to be executed, either when they are woken
or spawned. Our implementation first assigns threads to
clusters, the big core or the little core one, based on the
speedup and blocking labels selected for each thread at
runtime. Threads labeled as high speedup are assigned to
big core cluster, while low speedup and low blocking are
assigned to the little core cluster. All other ready threads,
either low speedup and high blocking or average speedup
and low blocking, are assigned to both clusters. Finally,
a hierarchical round-robin mechanism rr_allocator_()
chooses one core within the selected cluster for the thread.
This helps keep the system load balanced.

Biased-global Thread Selector: The thread selector’s pri-
mary objective is to accelerate the most critical/blocking
threads as soon as possible. The selector always searches
for a ready thread from the local runqueue first, prefer-
ably a high blocking one. If there are no ready threads
and migration is beneficial, the core triggers the migration
of a candidate thread waiting in another runqueue. The
highest blocking thread will be selected for migration. To
reduce the overhead of accessing state in other runqueues,
we follow the same principle as the default Linux CFS
scheduler, returning the best candidate thread from the local
core group first. Further, we allow a big core to select and
preempt a running thread on a little core to accelerate it. Big
cores are allowed to go idle only when there are no ready
threads left. The converse, little cores preempting big cores
is not allowed. The equal-progress for achieving fairness is
addressed by the scale-slice preemption checker described
earlier: we give each thread a maximum time slice according
to its expected performance on a little core.
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Energy-aware Algorithm Extension Until now, we have
only considered how to make scheduling decisions to maxi-
mize overall performance. Given the different performance-
power characteristics of different cores in an AMP system,
scheduling decision can be also used to maximize energy
efficiency or to achieve a certain trade-off between perfor-
mance and energy. So, we extend the original scheduler to
consider both optimization targets. We use a hyper-heuristic
to guide the core assignment of a thread t:

hyper (t) = ws ∗ speedup(t) + we ∗ energy(t)

wherews andwe are the pre-defined weights of the speedup
factor and energy scaling factor, which shows user specified
trade-off between performance gain and energy saving;
energy(t) is the energy scaling factor for the thread t be-
tween big and little cores, practically the ratio of consumed
energy for the same amount of work between the two core
types. We train the factors of this hyper-heuristic using a
similar approach as for the performance and energy models.
We collect data (speedup and energy efficiency scaling) for
our training programs running on the two core types and
then use combined regression to obtain the hyper-heuristic.

The extended energy-aware core allocator
rr_allocator_e() for the COLAB scheduling
algorithm is presented in Figure 5.3. The hyper-heuristic
essentially replaces the speedup factor in the original
rr_allocator_(). This allocation policy avoids placing
threads on the big cores if their performance does not
improve significantly or their energy efficiency deteriorates,
instead of considering performance only.

5.4 Scheduling Overhead Analysis

The overhead of the scheduling algorithms themselves is
negligible. Collecting the information needed to make our
scheduling decisions has some overhead though. Our per-
formance and energy models require accumulating per task
performance event counts from seven PMUs. This means
that we have to access these PMUs per context switch.
Reading each one takes 4 cycles on the Cortex-A53 and 14
cycles on the Cortex-A73. Since we need to read seven units,
the worst case overhead is within 100 cycles per context
switch. The typical time between context switches for a
single thread is orders of magnitude more than a hundred
cycles, so the cost of reading the PMUs should be negligible
too.

Identifying blocking threads requires instrumentation in
the latency-sensitive futex code. Still, the code we added
is short and relatively infrequently called, and the time of
labeling blocking level for a thread is about 512 nsec.

Finally, we need to use this information to label all
threads as high/low speedup, high/low energy scaling,
and high/low blocking. This does requires some processing
time but we purposefully kept the model simple, a linear
regression with seven parameters. Additionally, labels are
updated once every 10 msec, and the process of labeling
only costs 50-260 nsec, so the total observed overhead is
low.

6 EXPERIMENTAL EVALUATION

6.1 Experimental Setup
Experimental Environment: We first ran our experiments
on GEM5, simulating an ARM big.LITTLE-like architecture.
The big cores are similar to out-of-order 2 GHz CortexA57
cores, with a 48 KB L1 instruction cache, 32 KB L1 data cache
and 2 MB L2 cache. The little cores are similar to in-order
1.2 GHz CortexA53 ones, with a 32 KB L1 instruction cache,
32 KB L1 data cache and 512 KB L2 cache. We evaluated
four distinct hardware configurations on GEM5: 2B2S, 2B4S,
4B2S, 4B4S, where B denotes big cores and S denoted little
cores. We then validate COLAB and its energy-aware ex-
tension on a HiHope Hikey 970 development board with
4 Cortex-A73 big cores at 2.36GHz and 4 Cortex-A53 little
cores at 1.8GHz. As there is only 4 big cores in total to pro-
duce baseline performance, we evaluate four configurations:
1B1S, 1B3S, 2B2S and 3B1S. The OS is Linux v4.9. We cross-
compiled the kernel with gcc v5.4.0. The power of whole
board is measured by a power meter.

TABLE 2
Benchmarks categorization [3], [27], [33]

Name Sync. Rate Comm/Comp Ratio
blackscholes low high
bodytrack medium high
dedup medium high
ferret high medium
fluidanimate very high low
freqmine high high
swaptions low low
radix low high
lu ncb low low
lu cb low low
ocean cp low low
water nsquared medium medium
water spatial low low
fmm medium low
fft low high

Workloads: For our workloads we used 15 different
benchmarks (Table 2), pulled from PARSEC3.0 [2] and
SPLASH2 [33]. We only use the simsmall inputs on GEM5
as it is well-known that the simulation is extremely slow.
We group the benchmarks based on two criteria: a) syn-
chronization intensity and b) communication vs computa-
tion intensity. The grouping of the benchmarks into these
categories only relates to how we structure our evaluation.
It does not inform how WASH or COLAB will handle them.

For each group, we randomly generate workloads with
variable numbers of benchmarks and threads. These work-
loads allow us to investigate the behavior of the three
scheduling policies under different extremes. We then use
large mixed workloads with the simlarge inputs on HiHope
Hikey 970 to explore the general cases and validate COLAB
with its energy-aware extension on the real chip with asym-
metric multi-core processors. Table 3 shows the selected
workloads.

Fairness Metrics: Fairness is significant for an effective
scheduler, especially for an asymmetry-aware one. Unfair-
ness can bring a number of undesirable effects the whole
system. In order to show the fairness of COLAB, we follow
the notion of fairness from previous work [10], and use the
corresponding Unfairness metric:
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TABLE 3
Multi-programmed Workloads Compositions

Synchronization-intensive VS Non-synchronization-intensive Workloads
Index Workload Composition Synchronizations Threads
Sync - 1 water nsquared - fmm intensive 4
Sync - 2 dedup - fluidanimate intensive 18
Sync - 3 water nsquared - fmm - fluidanimate - bodytrack intensive 9
Sync - 4 dedup - ferret - fmm - water nsquared intensive 20
NSync - 1 water spatial - lu cb non-intensive 4
NSync - 2 blackscholes - swaptions non-intensive 16
NSync - 3 radix - fft - water spatial - lu cb non-intensive 8
NSync - 4 blackscholes - ocean cp - lu ncb - swaptions non-intensive 20

Communication-intensive VS Computation-intensive Workloads
Index Workload Composition Comm/Comp Threads
Comm - 1 water nsquared - blackscholes Communication-intensive 4
Comm - 2 ferret - dedup Communication-intensive 16
Comm - 3 water nsquared - fft - radix - bodytrack Communication-intensive 9
Comm - 4 blackscholes - dedup - ferret - water nsquared Communication-intensive 20
Comp - 1 water spatial - fmm Computation-intensive 4
Comp - 2 fluidanimate - swaptions Computation-intensive 17
Comp - 3 lu ncb - fmm - water spatial - lu cb Computation-intensive 8
Comp - 4 fluidanimate - ocean cp - lu ncb - swaptions Computation-intensive 20

Large Mixed Multi-programmed Workloads for Real System Validation
Index Workload Composition Threads Index Workload Composition Threads
Large - 1 radix - ocean cp 5 Large - 3 blackscholes - radix - fluidanimate - water spatial 15
Large - 2 ferret - swaptions 24 Large - 4 ocean cp - ferret - lu cb - swaptions 29

Unfairness =
MAX(Slowdown1, ..., Slowdownn)

MIN(Slowdown1, ..., Slowdownn)

Where n is the number of programs in the workload
and the unfairness is mainly measured by the difference
from program slowdown. The slowdown of each program is
defined by its execution time when it run alone over the time
when it run in a mixed workload under the same hardware
configuration. The Unfairness metric is better when lower.

Performance Metrics: Our evaluation uses two met-
rics to quantify scheduling efficiency: Heterogeneous Average
Normalized Turnaround Time (H ANTT) and Heterogeneous
System Throughput (H STP). They are based on ANTT and
STP, as introduced in [9]. Both ANTT and STP use as their
baseline the runtime of each application when executed
on its own, i.e. when there is no resource sharing and
scheduling decisions have little effect. ANTT is the average
slowdown of all applications in the mix relative to their
isolated baseline runtime. STP is the sum of the throughputs
of all applications, relative to their isolated throughput.

For AMPs, these two metrics fail to work as intended.
The runtime when executed alone is still affected by
scheduling decisions, e.g. which threads to run on big cores.
To overcome the problem, our modified metrics H ANTT
and H STP use the runtime of each application in the mix
when executed alone on a system where there are only big
cores. If the turnaround time of each application i while
being co-scheduled is TM

i and the turnaround time for the
same application when running alone on a big-only system
is TSB

i , then:

H ANTT =
1

n

n∑
i=1

TM
i

TSB
i

, H STP =
n∑

i=1

TSB
i

TM
i

H ANTT is better when lower, H STP is better when higher.
For most figures, we further normalize our results relative
to the Linux CFS results for the same configuration and
workload.

Schedulers: We evaluate COLAB by comparing it against
the default Linux CFS scheduler [24] and a state-of-the-
art realistic scheduler based on WASH [13]. Linux CFS is
the default scheduler on the GEM5 simulator and ARM
GTS [12] is the default scheduler on the development board.
They provide fairness while trying to maximize the overall
CPU resource utilization. In this work, we do not compare
against EAS, the Energy Aware Scheduling system, which
is included with recent versions of the Linux kernel to
improve energy efficiency on heterogeneous systems. While
an improvement over GTS in general, it falls back to CFS
by design when CPU utilization is high. This is the case
for almost all of our experiments, so EAS would have little
effect on the results.

6.2 Experiments on GEM5

In this section, we evaluate the performance of the COLAB
scheduler for multi-threaded multi-program workloads us-
ing the GEM5 simulator. We demonstrate that COLAB out-
performs both the Linux CFS and WASH when there is room
for improvement. In particular, where there is a limited
number of big cores and/or where the workload contains
communication-intensive benchmarks, it is beneficial to con-
sider core affinity and thread bottlenecks at the same time. In
this setting, the advantages of COLAB over Linux CFS and
WASH become apparant. In the rest of this subsection, we
examine in more detail the behavior of COLAB under four
different hardware configurations (2B2S, 2B4S, 4B2S, 4B4S)
for the five different classes of workloads shown in Table 3.

Synchronization-intensive vs Synchronization Non-
intensive workloads: The synchronization-intensive work-
loads comprise benchmarks with high synchronization rates
caused by locks, barriers and conditions, having a large
number of bottleneck threads. We expect that COLAB
should be able to schedule them better than CFS and WASH.
Conversely, synchronization non-intensive workloads should
provide fewer opportunities for COLAB to improve on CFS
and WASH.



9

2
b
2
s

2
b
4
s

4
b
2
s

4
b
4
s

G
e
o
m

e
a
n

2
b
2
s

2
b
4
s

4
b
2
s

4
b
4
s

G
e
o
m

e
a
n

Sync N_Sync

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

WASH COLAB

H
_

A
N

T
T

N
o

rm
a

li
z
e

d
 t
o

 L
in

u
x

2
b
2
s

2
b
4
s

4
b
2
s

4
b
4
s

G
e
o
m

e
a
n

2
b
2
s

2
b
4
s

4
b
2
s

4
b
4
s

G
e
o
m

e
a
n

Sync N_Sync

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

H
_

S
T

P

N
o

rm
a

li
z
e

d
 t
o

L
in

u
x

Fig. 8. Performance of Synchronization-Intensive and Non-
Synchronization-Intensive Workloads. All results are normalized
to the Linux CFS ones. Lower is better for H ANTT and higher is better
for H STP.

Figure 8 shows the performance of all three schedulers
for each workload class and hardware configuration. The
two plots show the average H ANTT (top) and the av-
erage H STP (bottom). In each plot, we show the results
for both the synchronization-intensive (Sync, left half) and
synchronization non-intensive (N Sync, right half) classes
of workloads. The results confirm our expectations. We
can observe that COLAB improves the turnaround time of
Sync workloads by around 15% and 4% on average com-
pared to CFS and WASH, respectively. We can also see that
hardware configurations with low core counts (e.g. 2B2S)
favor COLAB, allowing it to reduce turnaround time by
up to 20% compared to CFS and by up to 16% compared
to WASH. With fewer cores, run queues of cores become
longer, requiring careful balancing between bottleneck ac-
celeration and core sensitivity. WASH places all bottleneck
threads onto the big cores, making these cores congested
and ending up with only 3% performance improvement
over CFS. COLAB handles these bottleneck threads in a
more holistic way, improving turnaround time by 20%
and system throughput by 27%, compared to CFS. On the
other hand, the N Sync workloads contain fewer bottleneck
threads, making scheduling decisions much easier. As a
result of this, both COLAB and WASH perform similarly
to CFS, with COLAB improving average turnaround time
by 6% and average system throughput by 12% compared
to CFS. An interesting point is that COLAB significantly
outperforms (by 10% and 15% in turnaround time) WASH
and Linux for N Sync workloads on the 4B2S configuration.
In this case, there is not enough critical threads to utilize
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Fig. 9. Performance of Communication-Intensive and Computation-
Intensive Workloads. All results are normalized to the Linux CFS ones.
Lower is better for H ANTT and higher is better for H STP.

big cores and WASH keeps needlessly migrating predicted
critical threads between big cores. COLAB, on the other
hand, makes intelligent decisions by keeping more threads
on little cores, giving more more chance to big cores to
execute the few really critical threads as soon as possible.

Communication-intensive vs Computation-intensive
workloads: Benchmarks with high communication-to-
computation ratio are likely to have multiple bottleneck
threads. It is critical to accelerate these theads in order to
achieve a good performance, making this an ideal scenario
for COLAB. On the other hand, workloads with lower
communication-to-computation ratio are easier to schedule,
so CFS and WASH should do reasonably well there, leaving
little space for improvement.

The results for these two classes of workload, Comm and
Comp, are given in Figure 9. We can see that both COLAB
and WASH improve over CFS for communication-intensive
workloads. However, they offer different advantages on
different hardware configurations. COLAB distributes the
bottleneck threads to both big and little cores, which is
extremely important when having only two big cores (2B2S
and 2B4S configurations). COLAB improves the turnaround
time up to 21% compared to CFS and up to 15% compared
to WASH on 2B4S configuration. When more big cores are
available, WASH outperforms COLAB, as it keeps all bottle-
neck threads on big cores. On these configurations, WASH
improves turnaround time by up to 18% over CFS (on the
4B4S configuration) and up to 10% over COLAB (on 4B2S
configuration). On average, COLAB reduces turnaround
time by around 12% compared to CFS and 1% compared
to WASH for the communication-intensive workload class.
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Fig. 10. Performance of low number of application threads and high
number of application threads Workloads. All results are normalized to
the Linux CFS ones. Lower is better for H ANTT and higher is better for
H STP.

Figure 9 also shows that there are few opportunities for bet-
ter scheduling of computation-intensive workloads. How-
ever, even in this setting, COLAB does better than WASH
and Linux. Its turnaround time and system throughput are
improved by around 10% and 15%, respectively, compared
to CFS and 5% compared to WASH. This is, again, due to a
fact that multiple bottleneck threads are distributed both to
big and little cores, which results in more efficient use of the
available hardware resources for the few bottleneck threads
that are present.

Thread and program count: The final set of simula-
tion results show the impact of the number of threads in
a workload to the performance of all the schedulers. In
Figure 10, Thread-low denotes the workload where there
are less threads than cores in the system, whereas Thread-
high denotes the workloads where there are at least twice
more threads than cores available. We observe that both
COLAB and WASH perform significantly better than CFS
for Thread-low workloads. Fewer threads make it easier to
identify bottleneck threads and give them the resources they
need - either by migrating them to big cores (WASH and
COLAB) or by prioritizing them on little cores (COLAB).
With limited big core resources, COLAB outperforms WASH
because it distributes bottleneck threads to all available
cores, avoiding overloading the few big cores and leaving
the little cores idle. COLAB outperforms Linux up to 25%
(2B4S) and WASH by up to 21% (2B4S) in turnaround time.
On average, COLAB improves turnaround time and system
throughput by around 20% and 35% compared to CFS and
around 8% and 11% compared to WASH for workloads with
a low number of threads. For workloads with a high thread
count, neither COLAB nor WASH are able to improve much
on Linux. Overloading the system with threads means that,
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Fig. 11. Unfairness of the Large-1,2,3,4 workloads using different 4-core
configurations. All results are normalized to the ARM GTS one. Lower is
better.

regardless of where we place threads, all cores will have
long runqueues. In this case, COLAB and WASH increase
the management overhead (including more frequent thread
migrations) while offering little benefit, leading to perfor-
mance degradation. Of the two, COLAB migrates threads
more frequently, due to its scale-slice technique. This results
in a slightly worse performance than WASH. On average,
COLAB improves turnaround time and system throughput
by less than 2% and 3% compared to CFS, while WASH
slightly outperforms COLAB (by 2% in turnaround time and
0.2% in system throughput).

6.3 Experiments on HiHope Hikey 970
In this section, we validate the performance and the energy
efficiency of COLAB with energy-aware extension under
large (simlarge) mixed multi-threaded multi-programmed
workloads on the real ARM big.LITTLE architecture using a
HiHope Hikey 970 development board.

Fairness on large mixed workloads: The result for Un-
fairness is shown in Figure 11. Although COLAB is not
specially designed to achieve perfect fairness, the result
shows that the unfairness variance is within 10% compared
to ARM GTS. Therefore, it can safely conclude that the un-
fairness brought by COLAB is acceptable. Besides, Previous
work has illustrated that fairness and throughput are largely
conflicting optimization goals on AMPs [10]. As a result, in
order to achieve higher throughput, some loss for fairness is
necessary.

Portable performance on large mixed workloads: Perfor-
mance variance is significant under the default Linux sched-
uler (with ARM GTS enable) on the real board compared to
checkpoint-based GEM5 simulation. CFS-based ARM GTS
scheduler without a core sensitivity aware technique might
randomly allocate a high big core speedup thread on either
a big core or a little core. While WASH and COLAB could
make their intelligent decisions if there is a detected high
big core speedup thread during runtime. To validate this
portable performance, we report performance from 10 tests
on two distinct large workloads using a basic 1B1S configu-
ration and then the give the Geo-mean result.

As shown in the left hand side of Figure 12, H ANTT
results on the Large-1 (radix+ocean cp) worklaod for ARM
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Workloads using different 4-core configurations. All results are normal-
ized to the ARM GTS ones. Lower is better for H ANTT and higher is
better for H STP.

GTS are variant significantly from 2.2 (Test5) to 3.1 (Test10).
While for both WASH and COLAB, the H ANTT results
keep between 2.15 and 2.45. Similar with the results for
H STP. The Large-1 is a representative mixed workload
compared by a high core sensitivity program, ocean cp and
a low core sensitivity program, radix. The actual speedup
between big and little core for ocean cp is more than 5x
as validated in the performance modelling section. So if
ARM GTS unfortunately allocates the high big core speedup
threads from ocean cp onto the little (Test1, Test4, Test5
and Test10) during execution, COLAB will result in a up-to
27% (Test10) performance gain compared to ARM GTS. In
average, COLAB results in 12% and 14% performance gain

on H ANTT and H STP compared to ARM GTS, respec-
tively. WASH can also make kinds of intelligent decisions on
keeping the high big core speedup threads from ocean cp
on the big core. But it will also schedule bottleneck threads
from radix, which do not have a good speedup, to occupy
the limited big core resources. As a result, COLAB can
outperform WASH with an average 5% performance gain
in this workload.

While the main problem of WASH appears when the
workload is not core sensitivity as shown in the right hand
side of Figre 12. Large-2 workload is composed by ferret
and swaptions, application threads from both of them don’t
have significant speedup between big cores and little cores.
While, ferret is a synchronization-intensive parallel pro-
gram which means there will be bottleneck threads during
runtime. WASH simply schedules these bottleneck threads
to accumulate runqueue of the big core, which can not
actually achieve acceleration but make additional system
overhead. COLAB shows its unique advantage in this case
by in-place accelerate the bottleneck threads on local cores.
As a result, COLAB achieves a up-to 6% (2% in average)
performance gain while WASH suffers a up-to 4.5% (2% in
average) slowdown on H ANTT compared to ARM GTS.
The difference is larger for H STP, where COLAB achieves
a up-to 8% (3% in average) performance gain while WASH
suffers a up-to 5% (2% in average) slowdown compared to
ARM GTS.

To further validate the performance of COLAB on gen-
eral cases, we test two larger workloads (Large-3, Large-4)
each composed by 4 programs using distinct 4-core config-
urations (1B3S, 2B2S and 3B1S). The results are shown in
Figure 13, where each bar is the average value of multiple
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Fig. 14. Performance of Java Workloads(Dacapo: fop, jython, luindex, avrora, pmd, lusearch, sunflow, xalan) using different 4-core configurations.
All results are normalized to the ARM GTS ones. Lower is better.
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Fig. 15. Energy consumption of large multi-programmed Workloads
using different 4-core configurations. All results are normalized to the
ARM GTS ones. Lower is better for energy.

tests by a certain configuration. Similar with the results from
GEM5 simulation, COLAB shows its best advantage against
WASH on limited big core resource (1B3S). When there is
only 1 big core, the bottleneck in-place acceleration tech-
nique of COLAB make its intelligent decisions and results in
a up-to 12% (Large-3) performance gain on H ANTT com-
pared with WASH. When there are more big core resources,
both WASH and COLAB show more advantage as there
will be more opportunities to accelerate the needed threads
on big cores under core sensitivity aware solutions than
CFS-based ARM GTS. For example, WASH and COLAB
achieve 24% and 20% performance gain on H ANTT when
running Large-4 on 3B1S configuration compared to ARM
GTS. WASH even do better than COLAB as the amount of
big cores is sufficient to accelerate both the high speedup
and bottleneck threads for the given workload. In average,
COLAB achieves 5%-9% and 3%-6% performance gain on
H ANTT on the large workloads compared to ARM GTS
and WASH, respectively. WASH can not outperform ARM
GTS on H STP in average based on the problematic schedul-
ing decisions on the 1B3S configuration, while COLAB can
still keep good performance.

Portable performance on Java workloads: The exper-
iment in WASH [13] uses Java benchmarks taken from

Dacapo [4] [5]. Therefore, we design a similar experiment
to shows the performance results for COLAB. Dacpo bench-
mark suit contains many multi-thread benchmarks. How-
ever, some used in WASH original experiments are not
available in the current Dacpo edition. So we only compare
against the remaining benchmarks: fop, jython, luindex,
avrora, pmd, lusearch, sunflow, xalan. The metric is the exe-
cution time reported by the benchmark and is normalized to
WASH. The results are shown in Figure 14. It shows COLAB
outperforms WASH on all core configurations with 10%(up-
to 15%).

Energy efficiency on large mixed workloads: Figure 15
shows the performance energy consumption results for
large workloads scheduled by COLAB extension and WASH
against ARM GTS. In Figure 15, WASH shows up-to
5%(Large-4) energy cost. When allocating tasks, WASH sim-
ply schedules bottleneck threads to the big core, regardless
of how much energy they consume. An application might
cost more energy when running in the big core. For ARM
GTS, it cannot be aware of energy consumption of tasks. So
its result is not very stable and in some cases (Large-1 2B2S
and Large-2 1B3S), ARM GTS can outperform WASH with
nearly 2%. However, the energy-aware COLAB scheduler
takes the advantages of its energy model, uses the predicted
energy and allocates each application to proper cores to de-
crease the consumption. For example, with 1B3S configure,
WASH tries to allocate tasks to the big core, which makes the
full use of it. But it cost more energy because many tasks
are pushed into the run queue of big core. For COLAB, it
makes more intelligent decision by considering the energy
consumption and schedule those energy-intensive task to
little cores in order to reduce the energy consumption.

As shown in Figure-15, COLAB outperforms ARM GTS
and WASH with an average 5% (up-to 8%) energy saving
in all the large mixed multi-programmed workloads on
distinct 4-core based configurations.

7 CONCLUSION

We presented the novel COLAB scheduling framework
that targets multi-threaded multiprogrammed workloads on
asymmetric multicore processors (AMPs) which occupy a
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significant part of the processor market today, especially
in embedded systems. COLAB is the first general-purpose
scheduler that, by making collaborative decisions on core sen-
sitivity, thread criticallity and scheduling fairness, optimises
all these three factors that affect the AMP scheduling - core
affinity, thread criticality, and scheduling fairness.

We have demonstrated on a number of different work-
loads comprised of benchmarks taken from the state-of-the-
art parallel benchmark suites PARSEC3.0 and SPLASH-2,
simulating a number of different AMP configurations using
the well-known GEM5 simulator and then testing on a
ARMv8-based HiHope Hikey 970 development board, that
the COLAB scheduler outperforms state-of-the-art WASH,
ARM GTS and Linux CFS schedulers by up to 21%, 20% and
25%, respectively, in terms of turnaround time (5%, 9% and
11% on the average). We also demonstrate improvements
of 6%, 2% and 15% in terms of system throughput on the
average. Finally, we show that COLAB achieves an average
5% energy saving compared to both WASH and ARM
GTS. This demonstrates the applicability of our approach
in realistic scenarios, allowing better execution times and
energy efficiency for parallel workloads on AMP processors
without additional effort from the programmer.

This work is extended from the previous work published
in CGO 2020 [34].
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