175 research outputs found

    The experimental study on vibration characteristics of high-speed turbine generator bearing rotor system

    Get PDF
    This study investigates the effect of gas supply pressure on power frequency amplitude, critical speed of rotation, whirl frequency and its corresponding power frequency, as well as on whip frequency and its corresponding power frequency on the basis of a high-speed turbine generator bearing-rotor system supported by a gas bearing and with changes in bearing gas supply pressure. Experimental results show that the optimization of gas supply pressure will reduce power frequency amplitude, improve critical speed, and delay the occurrence of whirl and whip. Under these conditions, the stability of the bearing-rotor system is improved, thus providing an experiment basis for the on-line monitoring and control of high-speed turbine generator operation

    Covariance localization in the ensemble transform Kalman filter based on an augmented ensemble

    Get PDF
    With the increased density of available observation data, data assimilation has become an increasingly important tool in marine research. However, the success of the ensemble Kalman filter is highly dependent on the size of the ensemble. A small ensemble used in data assimilation could cause filter divergence, undersampling and spurious correlations. The primary method to alleviate these problems is localization. It can eliminate some spurious correlations and increase the rank of the forecast error covariance matrix. The ensemble transform Kalman filter has been widely used in various studies as a deterministic filter. Unfortunately, the covariance localization cannot be directly applied to ensemble transform Kalman filter. The new covariance localization needs to be presented to adapt the ensemble transform Kalman filter. Based on the method of expanded ensemble and eigenvalue decomposition, this study describes a variation of covariance localization that takes advantage of an unbiased covariance matrix from the expanded ensemble. Experiments described herein show that the new method outperforms the localization methods proposed by others when used in the ensemble transform Kalman filter. The new method yields an analysis estimate that is closer to the true state under different experimental conditions

    Delayed elasticity of metallic glasses: Loading time and temperature dependences of the anelastic relaxation

    Get PDF
    One of the hallmarks of disordered matter is the large amplitude of the anelastic deformation, i.e., the fraction of reversible deformation that is not instantaneously recovered after the release of load but is delayed in time. In this paper, this delayed elasticity is studied for the glass-forming Zr46.25Ti8.25Cu7.5Ni10Be27.5 alloy by means of stress step and recovery experiments. Even at high temperatures, not far from the glass transition, the delayed elasticity can recover an important fraction of the deformation and endure for a long time. Analyzing the effects of loading time and waiting time on the strain evolution, we reveal the presence of an anelastic response with a timescale dependent on loading time and an invariant shape, which indicates the presence of a distribution of reversible relaxation modes following a t-n law with exponent n between 0.5 and 1. The underlying distribution of energy barriers activated at different temperatures is accordingly shape invariant. Moreover, we found that a distribution of reversible modes corresponding to the high-frequency side of the a-relaxation peak can reproduce the experimental results. The results establish a direct link between the dynamical spectrum and the distribution of activation energies, revealing the origin of the transient creep and anelastic recovery behaviors of metallic glasses.Peer ReviewedPostprint (published version

    The marine environmental evolution in the northern Norwegian Sea revealed by foraminifera during the last 60 ka

    Get PDF
    Both planktonic and benthic foraminifera were identified in a sediment core collected from the northern Norwegian Sea to reconstruct the paleoceanographic evolution since the last glaciation. The assemblages and distribution patterns of dominant foraminiferal species with special habitat preferences indicated that three marine environments occurred in the northern Norwegian Sea since 62 ka BP: (1) an environment controlled by the circulation of the North Atlantic Current (NAC); (2) by polynya-related sinking of brines and upwelling of intermediate water surrounding the polynya; (3) by melt-water from Barents Sea Ice Sheet (BSIS). At 62–52.5 ka BP, a period with the highest summer insolation during the last glaciatial period, intensification of the NAC led to higher absolute abundances and higher diversity of foraminiferal faunas. The higher abundance of benthic species Cibicidoides wuellerstorfi indicates bottom water conditions that were well-ventilated with an adequate food supply; however, higher abundances of polar planktonic foraminiferal species Neogloboquadrina pachyderma (sin.) indicate that the near-surface temperatures were still low. During mid-late Marine Isotope Stage (MIS) 3 (52.5–29 ka BP), the marine environment of the northern Norwegian Sea alternately changed among the above mentioned three environments. At 29–17 ka BP during the last glacial maximum, the dominant benthic species Bolivina arctica from the Arctic Ocean indicates an extreme cold bottom environment. The BSIS expanded to its maximum extent during this period, and vast polynya formed at the edge of the ice sheet. The sinking of brines from the formation of sea ice in the polynyas caused upwelling, indicated by the upwelling adapted planktonic species Globigerinita glutinata. At 17–10 ka BP, the northern Norwegian Sea was controlled by melt-water. With the ablation of BSIS, massive amounts of melt water discharged into the Norwegian Sea, resulting in strong water column stratification, poor ventilation, and an oligotrophic bottom condition, which led to a drastic decline in the abundance and diversity of foraminifera. At 10–0 ka BP, the marine environment was transformed again by the control of the NAC, which continues to modern day. The abrupt decrease in relative abundance of Neogloboquadrina pachyderma (sin.) indicates a rise in near-surface temperature with the strengthening of the NAC and without the influence of the BSIS

    Polyarylether-based 2D covalent-organic frameworks with in-plane D–A structures and tunable energy levels for energy storage

    Full text link
    The robust fully conjugated covalent organic frameworks (COFs) are emerging as a novel type of semi-conductive COFs for optoelectronic and energy devices due to their controllable architectures and easily tunable the highest occupied molecular orbital (HOMO) and the lowest occupied molecular orbital (LUMO) levels. However, the carrier mobility of such materials is still beyond requirements due to limited π-conjugation. In this study, a series of new polyarylether-based COFs are rationally synthesized via a direct reaction between hexadecafluorophthalocyanine (electron acceptor) and octahydroxyphthalocyanine (electron donor). These COFs have typical crystalline layered structures, narrow band gaps as low as ≈0.65 eV and ultra-low resistance (1.31 × 10−6 S cm−1). Such COFs can be composed of two different metal-sites and contribute improved carrier mobility via layer-altered staking mode according to density functional theory calculation. Due to the narrow pore size of 1.4 nm and promising conductivity, such COFs and electrochemically exfoliated graphene based free-standing films are fabricated for in-plane micro-supercapacitors, which demonstrate excellent volumetric capacitances (28.1 F cm−3) and excellent stability of 10 000 charge–discharge cycling in acidic electrolyte. This study provides a new approach toward dioxin-linked COFs with donor-acceptor structure and easily tunable energy levels for versatile energy storage and optoelectronic device

    Spatial variation in grain-size population of surface sediments from northern Bering Sea and western Arctic Ocean: implications for provenance and depositional mechanisms

    Get PDF
    In general, sediments in nature comprise populations of various diameters. Accurate information regarding the sources and depositional mechanisms of the populations can be obtained through their temporal and spatial comparisons. In this study, the grain size distribution of surface sediments from the Bering Sea and western Arctic Ocean were fitted and partitioned into populations using a log-normal distribution function. The spatial variations in the populations indicate differences in their sources and deposition mechanisms. The sediments on most of the Bering Sea Shelf originated from the Yukon River, and were transported westward by waves and currents. However, the presence of a coarser population outside Anadyr Bay was the result of Anadyr River transport. Additionally, a northward transport trend of fine suspended particles was observed on the west side of the Bering Sea Shelf. The sediments in Hope Valley in the south Chukchi Sea also originated from the Yukon River. The coarser population on the central Chukchi Sea Shelf originated from coast of Alaska to the east, not the Yukon River, and was transported by sea ice and bottom brine water. The populations of sediments from the Chukchi Basin and the base of the Chukchi Sea Slope are the result of sea ice and eddy action. Surface sediments from the western high Arctic Ocean predominantly comprised five populations, and two unique populations with mode diameters of 50–90 μm and 200–400 μm, respectively, were ubiquitous in the glacial and interglacial sediments. It was difficult to distinguish whether these two populations originated from sea ice or icebergs. Therefore, caution should be exercised when using either the > 63 μm or > 250 μm fractions in sediments as a proxy index for iceberg and ice sheet variation in the high Arctic Ocean

    A Lactate Fermentation Mutant of Toxoplasma Stimulates Protective Immunity Against Acute and Chronic Toxoplasmosis

    No full text
    Toxoplasma gondii is an important zoonotic pathogen infecting one-third of the world’s population and numerous animals, causing significant healthcare burden and socioeconomic problems. Vaccination is an efficient way to reduce global sero-prevalence, however, ideal vaccines are not yet available. We recently discovered that the Toxoplasma mutant lacking both lactate dehydrogenases LDH1 and LDH2 (Δldh) grew well in vitro but was unable to propagate in mice, making it a good live vaccine candidate. Here, we tested the protection efficacy of ME49 Δldh using a mouse model. Vaccinated mice were efficiently protected from the lethal challenge of a variety of wild-type strains, including type 1 strain RH, type 2 strain ME49, type 3 strain VEG, and a field isolate of Chinese 1. The protection efficacies of a single vaccination were nearly 100% for most cases and it worked well against the challenges of both tachyzoites and tissue cysts. Re-challenging parasites were unable to propagate in vaccinated mice, nor did they make tissue cysts. High levels of Toxoplasma-specific IgG were produced 30 days after immunization and stayed high during the whole tests (at least 125 days). However, passive immunization of naïve mice with sera from vaccinated mice did reduce parasite propagation, but the overall protection against parasite infections was rather limited. On the other hand, Δldh immunization evoked elevated levels of Th1 cytokines like INF-γ and IL-12, at early time points. In addition, splenocytes extracted from immunized mice were able to induce quick and robust INF-γ and other pro-inflammatory cytokine production upon T. gondii antigen stimulation. Together these results suggest that cellular immune responses are the main contributors to the protective immunity elicited by Δldh vaccination, and humoral immunity also contributes partially. We also generated uracil auxotrophic mutants in ME49 and compared their immune protection efficiencies to the Δldh mutants. The results showed that these two types of mutants have similar properties as live vaccine candidates. Taken together, these results suggest that mutants lacking LDH were severely attenuated in virulence but were able to induce strong anti-toxoplasma immune responses, therefore are good candidates for live vaccines
    • …
    corecore