38 research outputs found

    The treatment of tuberculosis in the upper thoracic spine using the small incision technique through the third rib

    Get PDF
    BackgroundThe complex anatomical structure of the upper thoracic spine makes it challenging to achieve surgical exposure, resulting in significant surgical risks and difficulties. Posterior surgery alone fails to adequately address and reconstruct upper thoracic lesions due to limited exposure. While the anterior approach offers advantages in fully exposing the anterior thoracic lesions, the surgical procedure itself is highly intricate. Although there exist various anterior approaches for the upper thoracic spine, the incidence of upper thoracic spine lesions is relatively low. Consequently, there are limited reports on the treatment and reconstruction of upper thoracic spine lesions using the third rib small incision approach in the context of upper thoracic tuberculosis.MethodsWe collected data from four patients with upper thoracic tuberculosis who were admitted to our department between July 2017 and November 2022. The treatment for upper thoracic tuberculosis involved utilizing the third rib small incision approach, which included two cases of thoracic 3–4 vertebral tuberculosis, one case of thoracic 4 vertebral tuberculosis, and one case of thoracic 5 vertebral tuberculosis. Among the patients, three were positioned in the left lateral position, while one was positioned in the right lateral position. Prior to admission, all four patients received a two-week course of oral medication, consisting of isoniazid, rifampicin, pyrazinamide, and ethambutol. After the surgical procedure, they continued receiving anti-tuberculosis treatment for a duration of 12 months.ResultsThe average duration of the surgical procedure was 150 min, with an average blood loss of 500 ml. One patient exhibited symptoms of brachial plexus injury, which gradually improved after careful observation. All patients experienced primary wound healing, and no complications such as pulmonary infection, respiratory failure, or other adverse events were observed. Additionally, one patient showed elevated transaminase levels, leading to a modification in the anti-tuberculosis drug regimen from quadruple therapy to triple therapy.ConclusionThe treatment of upper thoracic tuberculosis through the third rib small incision technique is a very good surgical approach, which has the advantages of safety and effectiveness

    Effective Spectral Emissivity of Gas Turbine Blades for Optical Pyrometry

    Get PDF
    Turbine blade temperature measurements are important for monitoring the turbine engine performance to protect the hot components from damage due to excess temperatures. However, the reflected radiation from the blades and the surrounding environment complicate the blade temperature measurements by optical pyrometers. This study characterizes the effect of the reflected radiation on the effective spectral emissivity of a three-dimensional turbine blade in a confined turbine space for optical pyrometry temperature measurements. The effective spectral emissivity distribution on a threedimensional blade was numerically determined for various wavelengths (0.8-15.0 lm) and actual blade surface emissivities for a specified turbine blade model. When the actual spectral emissivity of the blade surface is assumed to be 0.5, the effective spectral emissivity varies from 0.5 to 0.538 at the longer wavelength of 10.0 lm and further increases from 0.5 to 1.396 at the shorter wavelength of 0.9 lm. The results show that the effective emissivity distributions at shorter wavelengths differ greatly from those at longer wavelengths. There are also obvious differences between the effective spectral emissivity and the actual surface emissivity at shorter wavelengths. The effect of the effective emissivity on the temperature measurement accuracy, when using the optical pyrometry, was also investigated for various wavelengths (0.8-15.0 lm). The results show that the radiation reflected from the blades has less effect on the temperature measurements than on the effective emissivity, especially at the shorter wavelengths of 0.8-3.0 lm. However, the temperature measurements still need to be corrected using the effective spectral emissivity to improve the temperature calculation accuracy. This analysis provides guidelines for choosing the optimum measurement wavelengths for optical pyrometry in turbine engines

    Artificial local magnetic field inhomogeneity enhances T2 relaxivity

    Get PDF
    磁性探针作为分子影像技术中的磁共振成像(MRI)造影剂在医学诊断中发挥着重要作用。为满足实际诊断中的准确性和精确性要求,科研工作者们长期致力于发展高性能的MRI造影剂以降低高剂量的使用带来的潜在风险。该文章指出了探针聚集体中局域磁场不均匀性是影响T2弛豫效能的关键因素。该文章首次利用磁场不均匀性因素阐明了单个探针和它们聚集体的MRI造影剂之间的相互关系,将可能成为弥补探针聚集体的造影剂理论的空白,并为发展新型高效的MRI造影剂提供重要参考。 该论文共同第一作者为博士后周子健和博士生田蕊,通讯作者为陈小元教授和聂立铭博士,部分工作得到我校物理学系王瑞方教授和化学化工学院高锦豪教授的支持。【Abstract】Clustering of magnetic nanoparticles (MNPs) is perhaps the most effective, yet intriguing strategy to enhance T2 relaxivity in magnetic resonance imaging (MRI). However, the underlying mechanism is still not fully understood and the attempts to generalize the classic outersphere theory from single particles to clusters have been found to be inadequate. Here we show that clustering of MNPs enhances local field inhomogeneity due to reduced field symmetry, which can be further elevated by artificially involving iron oxide NPs with heterogeneous geometries in terms of size and shape. The r2 values of iron oxide clusters and Landau–Lifshitz–Gilbert simulations confirmed our hypothesis, indicating that solving magnetic field inhomogeneity may become a powerful way to build correlation between magnetization and T2 relaxivity of MNPs, especially magnetic clusters. This study provides a simple yet distinct mechanism to interpret T2 relaxivity of MNPs, which is crucial to the design of high-performance MRI contrast agents.This work was supported by the National Science Foundation of China (81571744 and 81601489), the National Basic Research Program of China (863 Program 2015AA020502), the Fundamental Research Funds for the Central Universities (20720170065), the Science Foundation of Fujian Province (No. 2014Y2004), and by the Intramural Research Program (IRP), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH). 研究工作得到了国家自然科学基金委、国家高技术研究发展计划863项目、福建省重大研发平台项目和美国NIH Intramural Research Program的资助

    Artificial local magnetic field inhomogeneity enhances T2 relaxivity

    Get PDF
    磁性探针作为分子影像技术中的磁共振成像(MRI)造影剂在医学诊断中发挥着重要作用。为满足实际诊断中的准确性和精确性要求,科研工作者们长期致力于发展高性能的MRI造影剂以降低高剂量的使用带来的潜在风险。该文章指出了探针聚集体中局域磁场不均匀性是影响T2弛豫效能的关键因素。该文章首次利用磁场不均匀性因素阐明了单个探针和它们聚集体的MRI造影剂之间的相互关系,将可能成为弥补探针聚集体的造影剂理论的空白,并为发展新型高效的MRI造影剂提供重要参考。 该论文共同第一作者为博士后周子健和博士生田蕊,通讯作者为陈小元教授和聂立铭博士,部分工作得到我校物理学系王瑞方教授和化学化工学院高锦豪教授的支持。【Abstract】Clustering of magnetic nanoparticles (MNPs) is perhaps the most effective, yet intriguing strategy to enhance T2 relaxivity in magnetic resonance imaging (MRI). However, the underlying mechanism is still not fully understood and the attempts to generalize the classic outersphere theory from single particles to clusters have been found to be inadequate. Here we show that clustering of MNPs enhances local field inhomogeneity due to reduced field symmetry, which can be further elevated by artificially involving iron oxide NPs with heterogeneous geometries in terms of size and shape. The r2 values of iron oxide clusters and Landau–Lifshitz–Gilbert simulations confirmed our hypothesis, indicating that solving magnetic field inhomogeneity may become a powerful way to build correlation between magnetization and T2 relaxivity of MNPs, especially magnetic clusters. This study provides a simple yet distinct mechanism to interpret T2 relaxivity of MNPs, which is crucial to the design of high-performance MRI contrast agents.This work was supported by the National Science Foundation of China (81571744 and 81601489), the National Basic Research Program of China (863 Program 2015AA020502), the Fundamental Research Funds for the Central Universities (20720170065), the Science Foundation of Fujian Province (No. 2014Y2004), and by the Intramural Research Program (IRP), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH). 研究工作得到了国家自然科学基金委、国家高技术研究发展计划863项目、福建省重大研发平台项目和美国NIH Intramural Research Program的资助

    Anticorrosive properties and rust conversion mechanism of phytic acid-based surface tolerant coating

    No full text
    A phytic acid-based surface tolerant epoxy coating was prepared, and the effect of phytic acid on the corrosion resistance of the composite coating on rusty carbon steel substrate was investigated. The results showed that the low-frequency impedance modulus of the composite coating on rusty carbon steel could reached 10(8)omega center dot cm(2)order of magnitude after immersing for 480 h in 3.5 wt% NaCl solution. Compared with pure epoxy coating, the phytic acid-based surface tolerant epoxy coating on the rusty substrate exhibited better corrosion resistance even if with some artificial defects in the composite coating. The protective performance of the composite coating mainly came from the formation of a stable iron phytate chelate in the reaction of phytic acid and rust. For the rusty carbon steel, the original Fe(3+)on its surface was also transformed by phytic acid penetrating to the interface between the coating and the substrate. Therefore, a dense film was formed with the reaction of phytic acid and rust on the substrates, and the dense film became a part of the whole paint film, which could improve the corrosion resistance of the surface tolerant coating

    Performance evaluation of mercapto functional hybrid silica sol-gel coating and its synergistic effect with f-GNs for corrosion protection of copper surface

    No full text
    A nanocomposite coating comprising mercapto functional hybrid silica sol-gel coating and functionalized graphene nanoplates nanocomposite coatings with advanced anticorrosive properties was prepared by a sol-gel method. In this study, graphene oxide (GO) nanoplates were silanized using 3-aminopropyltriethoxysilane (APTES) to obtain functional graphene nanoplates (f-GNs). The f-GNs were characterized by FTIR, XRD, XPS, TEM, AFM and TGA techniques. The functionalized graphene nanoplates were chemically bonded to a sol-gel matrix and showed good dispersion in the sol. Then, silica hybrid sol-gel nanocomposites with raw GO and different amounts of f-GNs were applied on the copper surface. Uniform, defect-free and adherent sol-gel films were obtained. Various corresponding methods were used to investigate the nanocomposite coating's properties. The corrosion resistance of copper significantly improved after being coated with mercapto functional hybrid silica sol-gel. The addition of f-GNs to the mercapto functional silica sol-gel coatings further improved the corrosion resistance due to a synergistic effect. Moreover, with an increase in the amount of f-GNs in the nanocomposite coating, the nanocomposite showed improved corrosion resistance. The nanocomposite containing 0.1 wt% f-GNs can efficiently protect the copper substrate from corrosion. This improvement was primarily attributed to the homogeneous dispersion of the f-GNs in the silica gel matrix and their effective barrier against corrosive molecules and ions. However, adding raw GO or excess f-GNs to the silica hybrid sol-gel coating had a negative effect on the corrosion resistance
    corecore