10 research outputs found

    An Integrated Optimization Model for Energy Saving in Metro Operations

    No full text

    A Bi-Level Model to Resolve Conflicting Transit Priority Requests at Urban Arterials

    No full text

    Combined Multi-Temporal Optical and Radar Parameters for Estimating LAI and Biomass in Winter Wheat Using HJ and RADARSAR-2 Data

    No full text
    Leaf area index (LAI) and biomass are frequently used target variables for agricultural and ecological remote sensing applications. Ground measurements of winter wheat LAI and biomass were made from March to May 2014 in the Yangling district, Shaanxi, Northwest China. The corresponding remotely sensed data were obtained from the earth-observation satellites Huanjing (HJ) and RADARSAT-2. The objectives of this study were (1) to investigate the relationships of LAI and biomass with several optical spectral vegetation indices (OSVIs) and radar polarimetric parameters (RPPs), (2) to estimate LAI and biomass with combined OSVIs and RPPs (the product of OSVIs and RPPs (COSVI-RPPs)), (3) to use multiple stepwise regression (MSR) and partial least squares regression (PLSR) to test and compare the estimations of LAI and biomass in winter wheat, respectively. The results showed that LAI and biomass were highly correlated with several OSVIs (the enhanced vegetation index (EVI) and modified triangular vegetation index 2 (MTVI2)) and RPPs (the radar vegetation index (RVI) and double-bounce eigenvalue relative difference (DERD)). The product of MTVI2 and DERD (R2 = 0.67 and RMSE = 0.68, p < 0.01) and that of MTVI2 and RVI (R2 = 0. 68 and RMSE = 0.65, p < 0.01) were strongly related to LAI, and the product of the optimized soil adjusted vegetation index (OSAVI) and DERD (R2 = 0.79 and RMSE = 148.65 g/m2, p < 0.01) and that of EVI and RVI (R2 = 0. 80 and RMSE = 146.33 g/m2, p < 0.01) were highly correlated with biomass. The estimation accuracy of LAI and biomass was better using the COSVI-RPPs than using the OSVIs and RPPs alone. The results revealed that the PLSR regression equation better estimated LAI and biomass than the MSR regression equation based on all the COSVI-RPPs, OSVIs, and RPPs. Our results indicated that the COSVI-RPPs can be used to robustly estimate LAI and biomass. This study may provide a guideline for improving the estimations of LAI and biomass of winter wheat using multisource remote sensing data

    A fully automatic MRI‐guided decision support system for lumbar disc herniation using machine learning

    No full text
    Abstract Background Normalized decision support system for lumbar disc herniation (LDH) will improve reproducibility compared with subjective clinical diagnosis and treatment. Magnetic resonance imaging (MRI) plays an essential role in the evaluation of LDH. This study aimed to develop an MRI‐based decision support system for LDH, which evaluates lumbar discs in a reproducible, consistent, and reliable manner. Methods The research team proposed a system based on machine learning that was trained and tested by a large, manually labeled data set comprising 217 patients' MRI scans (3255 lumbar discs). The system analyzes the radiological features of identified discs to diagnose herniation and classifies discs by Pfirrmann grade and MSU classification. Based on the assessment, the system provides clinical advice. Results Eventually, the accuracy of the diagnosis process reached 95.83%. An 83.5% agreement was observed between the system's prediction and the ground‐truth in the Pfirrmann grade. In the case of MSU classification, 95.0% precision was achieved. With the assistance of this system, the accuracy, interpretation efficiency and interrater agreement among surgeons were improved substantially. Conclusion This system showed considerable accuracy and efficiency, and therefore could serve as an objective reference for the diagnosis and treatment procedure in clinical practice
    corecore