45 research outputs found

    THE SOLUTION OF FRACTIONAL NONLINEAR GINZBURG-LANDAU EQUATION WITH WEAK INITIAL DATA

    Get PDF
    Abstract. In this paper, we study the solution of the fractional nonlinear Ginzburg-Landau(FNGL) equation with weak initial data in the weighted Lebesgue spaces. The existence of a solution to this equation is proved by the contraction-mapping principle

    N6-methyladenosine RNA modification promotes viral genomic RNA stability and infection

    Get PDF
    Molecular manipulation of susceptibility (S) genes that are antipodes to resistance (R) genes has been adopted as an alternative strategy for controlling crop diseases. Here, we show the S gene encoding Triticum aestivum m(6)A methyltransferase B (TaMTB) is identified by a genome-wide association study and subsequently shown to be a positive regulator for wheat yellow mosaic virus (WYMV) infection. TaMTB is localized in the nucleus, is translocated into the cytoplasmic aggregates by binding to WYMV NIb to upregulate the m(6)A level of WYMV RNA1 and stabilize the viral RNA, thus promoting viral infection. A natural mutant allele TaMTB-SNP176C is found to confer an enhanced susceptibility to WYMV infection through genetic variation analysis on 243 wheat varieties. Our discovery highlights this allele can be a useful target for the molecular wheat breeding in the future

    A Robust Anti-Thermal-Quenching Phosphor Based on Zero-Dimensional Metal Halide Rb3InCl6:xSb3.

    Get PDF
    High-power phosphor-converted white light-emitting diodes (hp-WLEDs) have been widely involved in modern society as outdoor lighting sources. In these devices, due to the Joule effect, the high applied currents cause high operation temperatures (>500 K). Under these conditions, most phosphors lose their emission, an effect known as thermal quenching (TQ). Here, we introduce a zero-dimensional (0D) metal halide, Rb3InCl6:xSb3+, as a suitable anti-TQ phosphor offering robust anti-TQ behavior up to 500 K. We ascribe this behavior of the metal halide to two factors: (1) a compensation process via thermally activated energy transfer from structural defects to emissive centers and (2) an intrinsic structural rigidity of the isolated octahedra in the 0D structure. The anti-TQ phosphor-based WLEDs can stably work at a current of 2000 mA. The low synthesis cost and nontoxic composition reported here can herald a new generation of anti-TQ phosphors for hp-WLED

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Effects of Different Crop Root Systems on Soil Detachment by Concentrated Flow on the Loess Plateau in China

    No full text
    Soil erosion in sloping cropland is a major water and soil conservation issue in the Loess Plateau region, one of the main areas with sloping cropland in China. However, the effect of crop root systems, a major factor potentially influencing soil and water conservation in cropland, on farmland erosion, remains unclear. In the present study, soil erosion was investigated using indoor runoff scouring experiments with millet, maize, and soybean cover, with a bare surface as the control (CK), on sloping surfaces. Crop root system characteristics, rill initiation time, and erosion law, as well as their interactions, were investigated. Rill initiation time in slopes with all three crops slope were greater than that in the bare slope, indicating that crops could significantly enhance soil anti-scourability. Soil detachment rate decreased under crop cover when compared with bare land, considering the average soil detachment rate was the highest under CK, followed by under maize and soybean, and the least under millet. Slope gradient and unit discharge rate were positively correlated with soil detachment rate. Root length density, root surface area density, and root volume density were negatively correlated with soil detachment rate. Moreover, roots in the 0–1 mm diameter range dominantly influenced soil erosion

    ML792 inhibits growth and TGF-β1-induced EMT of osteosarcoma cells via TGF-β1/Smad and PI3K/AKT pathways

    No full text
    Osteosarcoma (OS), a common bone malignancy, is highly metastatic and featured by poor prognosis. SUMOylation is deeply involved in tumorigenesis and cancer progression. SUMO-activating enzyme (SAE) inhibitor has been found to play an anti-proliferative role in multiple cancers. However, their functions in osteosarcoma remain unknown. Based on this, it was hypothesized that ML792, an SAE inhibitor, might be an anti-tumor candidate against osteosarcoma in this paper. The role of ML792 in the treatment of osteosarcoma was investigated in vitro and in vivo. The results showed ML792 significantly arrested human osteosarcoma cells (HOCs) at the G2/M phase, inhibited the proliferation of HOCs, and elicited apoptosis. To better assess the inhibitory role of ML792 in human osteosarcoma, we induced HOCs with TGF-β1. Our study showed that ML792 significantly suppressed the migration, invasion, and EMT of HOCs induced by TGF-β1. Moreover, ML792 inhibited TGF-β1-induced phosphatidylinositol- 3-kinase (PI3K) and AKT activation, as well as Smad2/3 phosphorylation in HOCs. In vivo, ML792 inhibits the growth of osteosarcoma. Thus, ML792 is a promising new antitumor agent to suppress the progress of OS cells undergoing proliferation and EMT by targeting the PI3K/Akt and TGF-β1/Smad pathway and may prevent or reduce the growth and metastasis of osteosarcoma

    Research on rheological behavior of fresh concrete single-cylinder pumping based on SPH-DEM

    No full text
    Abstract In contrast to traditional approaches to simulating fresh concrete, the model applied here allows issues such as liquid phase and the motion of sub-scale particles to be considered. The rheological behavior of fresh concrete materials was investigated, and the slump test and pumping process of fresh concrete were simulated by combining the smooth particle hydrodynamics coupled with discrete element method. Based on Bi-viscosity model and Bingham model, linear and nonlinear fitting of rheometer data and the derivation equations were educing. Bi-viscosity model and the Bingham model were compared in slump test. The results show that the Bi-viscosity model is more accurate in simulation, and the error percentage is less than 10%. The Bi-viscosity model was used to simulate and predict the results of slump experiment, and the influence of rheological parameters on the slump velocity and shape was obtained. The simulation analysis model of concrete single-cylinder pumping is established, and the experimental and simulation analysis models are compared. The results show that the SPH-DEM pumping pressure prediction is very close to the experimental results

    Subsurface Bacterioplankton Structure and Diversity in the Strongly-Stratified Water Columns within the Equatorial Eastern Indian Ocean

    No full text
    The consequences of climate change may directly or indirectly impact the marine biosphere. Although ocean stratification has been recognized as one of the crucial consequences of ocean warming, its impacts on several critical aspects of marine microbes remain largely unknown in the Indian Ocean. Here, we investigate the effects of water stratification, in both surface and subsurface layers, on hydrogeographic parameters and bacterioplankton diversity within the equatorial eastern Indian Ocean (EIO). Strong stratification in the upper 200 m of equatorial EIO was detected with evidential low primary productivity. The vertical bacterioplankton diversity of the whole water columns displayed noticeable variation, with lower diversity occurring in the surface layer than in the subsurface layers. Horizontal heterogeneity of bacterioplankton communities was also in the well-mixed layer among different stations. SAR11 and Prochlorococcus displayed uncharacteristic low abundance in the surface water. Some amplicon sequence variants (ASVs) were identified as potential biomarkers for their specific depths in strongly-stratified water columns. Thus, barriers resulting from stratification are proposed to function as an ‘ASV filter’ to regulate the vertical bacterioplankton community diversity along the water columns. Overall, our results suggest that the effects of stratification on the structure and diversity of bacterioplankton can extend up to the bathypelagic zone in the strongly-stratified waters of the equatorial EIO. This study provides the first insight into the effect of stratification on the subsurface microbial communities in the equatorial eastern Indian Ocean

    Stem Cell-Associated Signatures Help to Predict Diagnosis and Prognosis in Ovarian Serous Cystadenocarcinoma

    No full text
    Ovarian serous cystadenocarcinoma (OV) is a fatal gynecologic cancer with a five-year survival rate of only 46%. Resistance to platinum-based chemotherapy is a prevalent factor in OV patients, leading to increased mortality. The platinum resistance in OV is driven by transcriptome heterogeneity and tumor heterogeneity. Studies have indicated that ovarian cancer stem cells (OCSCs), which are chemoresistant and help in disease recurrence, are enriched by platinum-based chemotherapy. Stem cells have a significant influence on the OV progression and prognosis of OV patients and are key pathology mediators of OV. However, the molecular mechanisms and targets of OV have not yet been fully understood. In this study, systematic research based on the TCGA-OV dataset was conducted for the identification and construction of key stem cell-related diagnostic and prognostic models for the development of multigene markers of OV. A six-gene diagnostic and prognostic model (C19orf33, CBX2, CSMD1, INSRR, PRLR, and SLC38A4) was developed based on the differentially expressed stem cell-related gene model, which can act as a potent diagnostic biomarker and can characterize the clinicopathological properties of OV. The key genes related to stem cells were identified by screening the genes differentially expressed in OV and control samples. The mRNA-miRNA-TF molecular network for the six-gene model was constructed, and the potential biological significance of this molecular model and its impact on the infiltration of immune cells in the OV tumor microenvironment were elucidated. The differences in immune infiltration and stem cell-related biological processes were determined using gene set variation analysis (GSVA) and single-sample gene set enrichment analysis (ssGSEA) for the selection of molecular treatment options and providing a reference for elucidating the posttranscriptional regulatory mechanisms in OV
    corecore