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THE SOLUTION OF FRACTIONAL NONLINEAR

GINZBURG–LANDAU EQUATION WITH WEAK INITIAL DATA

JIE XIN, JIAQIAN HU AND HONG LU

Abstract. In this paper, we study the solution of the fractional nonlinear Ginzburg-Landau(FNGL)
equation with weak initial data in the weighted Lebesgue spaces. The existence of a solution to
this equation is proved by the contraction-mapping principle.

1. Introduction

In this paper, we study the initial value problem (IVP) of the fractional Ginzburg-
Landau (FNGL) equation

i
∂u
∂ t

+ iρu+(1+ iβ )(−�)αu+ γ|u|σu = 0, t � 0, x ∈ R, (1.1)

u(x,0) = u0(x), (1.2)

where ρ < 0, β < 0, σ ∈ [2,4] , α(α ∈ ( 1
2 ,1)) is a fixed parameter and u(x,t) is a

complex value function. Here Riesz potential operator (−�)α is defined through the
Fourier transform

f̂ (ξ ) =
∫

e−2π ixξ f (x)dx,

( ̂(−�)α f )(ξ ) = (2π |ξ |)2α f̂ (ξ ).

The Ginzburg-Landau equation plays an important role in physics and mathemat-
ics, and the fractional generalization of the Ginzburg-Landau equation was suggested
in [1]. In [2] Vasily E. Tarasov and George M. Zaslavsky used the fractional integrals
to describe fractal media, and some simple solutions of the Ginzburg-Landau equa-
tion(GLE) for fractal media are considered and different forms of the fractional GLE
are presented. In [3], A. V. Milovanov and J. Juul Rasmussen discussed the fractional
modifications of the free energy functional at criticality and of the widely known GLE
central to the classical Landau theory of second-type phase transitions in some detail
and derived that an implication of the fractional GLE is a renormalization of the transi-
tion temperature owing to the nonlocality present.

We are mainly interested in the well-posedness result for initial data u0 in the
weighted Lebesgue spaces, u0 ∈ L̇r+α ,p+1(R) (defined below). In order to obtain our
results, it is necessary to introduce the following fractional calculus inequality, see [5-7]
for a proof.
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LEMMA 1.1. Let 1 < p < ∞,r > 1 , and h ∈ Lrp
loc(R) . Then

‖(−�)
α
2 F( f )h‖p � C‖F ′( f )‖∞‖(−�)

α
2 ( f )M(hrp)

1
rp ‖p, (1.3)

where M denotes the Hardy-Littlewood maximal function, i.e.,

M f (x) = sup
1
|I|

∫
I
| f (y)|dy.

Here the homogeneous Lebesgue space L̇s,q(R) consists of all v such that

(−�)
s
2 v ∈ Lq, s ∈ R, 1 � q < ∞,

and the standard norm is given by

‖v‖s,q = ‖(−�)
s
2 v‖Lq .

These spaces are also called the spaces of Riesz potentials, Kato and Ponce [8]
consider the Navier-Stokes equations with initial data in this type of spaces.

We prove that if 1
2 < α < 1 and u0 ∈ L̇r+α ,p+1(R) with r, p satisfying

1 < p < ∞, α <
1
p

< 2α, r =
1
p
−2α(< 0), −1 � r < −1

2
,

then the IVP(1.1) and (1.2) is locally well-posed. The solution is global if u0 is suffi-
ciently small. The detail statements are given is Theorem 2.1 of the next section.

2. The work space and the main results

We’ll need to use the spaces of weighted continuous functions in time, which have
been introduced by Kato and Ponce [8] in solving the Navier-Stokes equations.

DEFINITION 2.1. Suppose T > 0 and λ > 0 are real numbers. The spaces Cλ ,s,q

and Ċλ ,s,q are defined as

Cλ ,s,q = { f ∈C((0,T ), L̇s,q), ‖ f‖λ ,s,q < ∞}
where the norm is given by

‖ f‖λ ,s,q = sup{tλ‖ f‖s,q, t ∈ (0,T )}
Ċλ ,s,q is a subspace of Cλ ,s,q :

Ċλ ,s,q = { f ∈Cλ ,s,q, lim
t→0

tλ‖ f‖s,q = 0}

when λ = 0, Cs,q are used for BC((0,T ), L̇s,q) , where the space BC((0,T ), L̇s,q) com-
prises all bounded and continuous functions g : (0,T ) → L̇s,q with

‖g‖BC((0,T),L̇s,q) = max
0<t<T

‖g(t)‖s,q < ∞.
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These spaces are important in uniqueness and local existence problem, f ∈Cλ ,s,q

(resp. f ∈ Ċλ ,s,q ) implies that ‖ f‖s,q = O(t−λ ) (resp. o(t−λ )).
The main result of this section is the well-posedness theorem that states

THEOREM 2.1. Assume that 1
2 < α < 1 and u0 ∈ L̇r+α ,p+1 and r, p satisfying

1 < p < ∞, α <
1
p

< 2α, r =
1
p
−2α(< 0), −1 � r � −1

2
. (2.1)

Then there exists T = T (u0) and a unique solution u(t) of the IVP (1.1) and (1.2)
in the time interval [0,T ) satisfying

u ∈ YT = (∩p�q<∞C 1
q−α ,q+1)∩ (∩p�q<∞ ∩s> 1

q−α Ċ(s− 1
q +α)/2α ,s,q+1).

In particular,
u ∈ BC((0,T ), L̇r+α ,p)∩ (∩s>r+αC((0,T ), L̇s,p)).

Furthermore, for some neighborhood v of u0 , the mapping

B : v �→ YT : u0 → u

is Lipschitz.

REMARK 2.2. If ‖u0‖r+α ,p+1 is small enough, then we can take T = ∞ .

3. The estimates of the operators K and G

We write the FNGL equation (1.1) into the integral form:

u = Ku0−G(u,t)

= e−(β−i)Λ2αt u0−
∫ t

0
e−(β−i)Λ2α(t−τ)(ρu− iγ|u|σu)dτ, (3.1)

where K(t) = e−(β−i)Λ2αt is the solution operator of the linear equation

i∂t u+(1+ iβ )Λ2αu = 0, with Λ = (−�)
1
2 .

We shall solve (3.1) in the spaces of weighted continuous function in time intro-
duced in the beginning of this section. To this end we need estimates for the operators
K and G acting between these spaces. These are established in the two lemmas that
follow.

LEMMA 3.1. (i) For 1 � q < ∞ and s ∈ R, the operator K maps continuously
from L̇s,q into Cs,q = BC((0,∞), L̇s,q). (ii) If q1 , q2 , s1 , s2 and α2 satisfy

q1 � q2, s1 � s2, α2 =
1

2α
(s2 − s1)+

1
2α

(
1
q1

− 1
q2

)
.

Then K maps continuously from L̇s1,q1 to Ċα2,s2,q2 .
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The proof of the Lemma 3.1 is similar to that in [4], which solved the quasi-
geostrophic type equations.

Now we give estimates for the operator G:

G(g) =
∫ t

0
K(t− τ)g(τ)dτ.

LEMMA 3.2. If q1 , q2 , s1 , s2 , α1 and α2 satisfy

q1 � q2, s1 � s2 < s1 +2α −
(

1
q1

− 1
q2

)
,

α1 < 1, α2 = α1 −1+
1

2α

[
s2 − s1 +

1
q1

− 1
q2

]
.

Then G maps continuously from Ċα1,s1,q1 to Ċα2,s2,q2 .

Proof. Let g ∈ Ċα1,s1,q1 , clearly

‖G(g)‖α2,s2,q2 = sup
t∈[0,T )

tα2

∫ t

0
‖(−�)

s0
2 K(t − τ)(−�)

s1
2 g(τ)‖Lq2 dτ,

where s0 = s2 − s1 , using Young’s inequality, we have

‖G(g)‖α2,s2,q2 � sup
t∈[0,T )

tα2

∫ t

0
‖(−�)

s0
2 K(t− τ)‖Lq‖(−�)

s1
2 g(τ)‖Lq1 dτ,

with 1
q = 1− ( 1

q1
− 1

q2
) . If s0 � 0, the operator (−�)

s0
2 K(t) has the property

‖(−�)
s0
2 K(t)‖Lq(R) � ct

1
2α (−s0−1+ 1

q ), (3.2)

where q ∈ [1,∞) and c is a constant, the proof of this property is similar to that for the
heat operator [8,9].

So we obtain

‖G(g)‖α2,s2,q2 � c‖g‖α1,s1,q1 sup
t∈[0,T )

tα2

∫ t

0
(t− τ)−

1
2α (s0+1− 1

q )τ−α1dτ

� c‖g‖α1,s1,q1 sup
t∈[0,T )

tα2−α1+1− 1
2α (s0+1− 1

q )

×B

(
1− 1

2α

(
s0 +1− 1

q

)
,1−α1

)
,

where c is a constant and B(a,b) is the Beta function

B(a,b) =
∫ 1

0
(1− x)a−1xb−1dx.
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By noticing that B(a,b) is a finite when a > 0, b > 0 and that

s0 = s2 − s1, 1− 1
q

=
1
q1

− 1
q2

.

We obtain
‖G(g)‖α2,s2,q2 � c‖g‖α1,s1,q1 ,

if the indices satisfy

0 � s2 − s1 < 2α −
(

1
q1

− 1
q2

)
,

α1 < 1, α2 = α1 −1+
1

2α

[
s2 − s1 +

1
q1

− 1
q2

]
. �

4. The proof of Theorem 2.1

We prove Theorem2.1 by the method of integral equations and contraction-mapping
arguments.

We defined
X = Cr+α ,p+1∩Ċ− r

2α ,α ,p+1,

with norm for u ∈ X given by

‖u‖X = ‖u−Ku0‖0,r+α ,p+1 +‖u‖− r
2α ,α ,p+1,

and the complete metric space XR to be [-R,R] in X . Consider the operator A (u,u0) :
XR ×V �→ X .

A (u,u0)(t) = Ku0 −G(ρu− iγ|u|σu)(t), 0 < t < T,

where V is some neighborhood of u0 in L̇r+α ,p+1 and T will be choosen.
Using lemma 3.1 by substituting s = r+ α , q = p+1 in (i) and

q1 = q2 = p, s1 = r+ α, s2 = α, α2 = − r
2α

in (ii) , we find that Kũ0 ∈ XR for ũ0 ∈V if T is taken small enough and V is choosen
properly.

To estimate G , we use lemma 3.2 with

q1 =
p+1

2
, q2 = p+1, s1 = α, s2 = l+r+α +

1
p(p+1)

, α1 =− r
α

, α2 =
l

2α
.

To obtain for some constant c

‖G(ρu− iγ|u|σu)‖ l
2α ,l+r+α+ 1

p(p+1) ,p+1 � c‖u‖− r
α ,α , p+1

2
+ c‖|u|σu‖− r

α ,α , p+1
2

. (4.1)
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Using Lemma 1 and imbedding theorem, we have

‖|u|σu‖− r
α ,α . p+1

2
� c‖|u|σ‖∞‖u‖− r

α ,α , p+1
2

� c‖|u|σ‖− r
2α ,α ,p+1‖u‖− r

2α ,α ,p+1. (4.2)

Then we have

‖G(ρu−iγ|u|σu)‖ l
2α ,l+r+α+ 1

p(p+1) ,p+1 � c‖u‖− r
2α ,α ,p+1+c‖|u|σ‖− r

2α ,α ,p+1‖u‖− r
2α ,α ,p+1,

(4.3)
for l ∈ [−r− 1

p(p+1) ,−2r).
Using Lemma 1 again, we have

‖|u|σ‖− r
2α ,α ,p+1 � c‖u‖σ

− r
2α ,α ,p+1 � cRσ .

Then we get

‖G(ρu− iγ|u|σu)‖ l
2α ,l+r+α+ 1

p(p+1) ,p+1 � cR(Rσ +1).

We should notice that the restriction (2.1) on r, p are necessary in order to apply
lemma 3.1 and lemma 3.2.

Furthermore

‖A (u,u0)−A (ũ,u0)‖X = ‖G(ρu− ir|u|σu)−G(ρ ũ− ir|ũ|σ ũ)‖X .

By (4.1) and (4.2), we obtain

‖A (u,u0)−A (ũ,u0)‖X

�c‖u− ũ‖X + c‖|u|σ‖X‖u− ũ‖X + c‖(|u|− |ũ|)( ∑
i+ j=σ−1

|u|i|ũ j|)‖X‖ũ‖X

�‖u− ũ‖X(c+ c‖|u|‖σ
X + chσ−1‖ũ‖X),

where h = max{1,R}.
Our above estimates show that if we choose T to be small and R appropriately,

then A maps XR into itself and is a contraction. Consequently there exists a unique
fixed point u ∈ XR : u = B(u0) satisfying u = A (u,u0) . It is easy to see from these
estimates that the uniqueness can be extended to all R

′
by further reducing the time

interval and thus to the whole X .
To prove the Lipschitz continuity of B on V . Let u = B(u0) and ς = B(ς0) for

u0,ς0 ∈V . Then

‖u− ς‖X = ‖A (u,u0)−A (ς̃ ,ς0)‖X

� ‖A (u,u0)−A (ς̃ ,u0)‖X −‖A (ς ,u0)−A (ς̃ ,ς0)‖X

� c‖u− ς‖X +‖K(u0− ς0)‖.
Since A is a contraction, c < 1. Therefore the asserted property is obtained by

applying lemma 3.1 to the second term of the last inequality.
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To show that u is in the asserted class YT , we notice that

u = A (u,u0) = Ku0 −G(ρu− ir|u|σu).

We apply lemma 3.1 twice to Ku0 to show that

Ku0 ∈C 1
q−α ,q+1, Ku0 ∈ Ċ(s− 1

q +α)/(2α),s,q+1

for any p � q < ∞ and s > 1
q −α . To show the second part

G(ρu− ir|u|σu) ∈C 1
q−α ,q+1, p � q < ∞. (4.4)

We use lemma 3.2 with

q1 =
p+1

2
, q2 = q+1,

s1 = α −1, s2 =
1

q+1
−α +

2
p(p+1)

,

α1 = −2r+1
2α

, α2 = 0,

‖G(ρu− ir|u|σu)‖0, 1
q+1−α+ 2

p(p+1) ,q+1 � c‖ρu− ir|u|σu‖− 2r+1
2α ,α−1, p+1

2

� c‖ρu− ir|u|σu‖− r
α ,α , p+1

2

� c‖u‖X + c‖u‖σ+1
X .

Once again we apply lemma 3.2 with

q1 =
p+1

2
, q2 = q+1,

s1 = α −1, s2 = s+
2

p(p+1)
− 1

q(q+1)
,

α1 = − r
α
− 1

2α
, α2 =

s− 1
q + α
2α

to show that

G(ρu− ir|u|σu) ∈ Ċ(s− 1
q +α)/(2α),s+ 2

p(p+1)− 1
q(q+1) ,q+1 for s >

1
q
−α, (4.5)

but s should also satisfy

s < 3α −1− 2
p

+
1
q
,

as requried by lemma 3.2.
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