17 research outputs found

    Hemojuvelin-Neogenin Interaction Is Required for Bone Morphogenic Protein-4-induced Hepcidin Expression

    Get PDF
    Hemojuvelin (HJV) is a glycosylphosphatidylinositol-linked protein and binds both bone morphogenic proteins (BMPs) and neogenin. Cellular HJV acts as a BMP co-receptor to enhance the transcription of hepcidin, a key iron regulatory hormone secreted predominantly by liver hepatocytes. In this study we characterized the role of neogenin in HJV-regulated hepcidin expression. Both HJV and neogenin were expressed in liver hepatocytes. Knockdown of neogenin decreased BMP4-induced hepcidin mRNA levels by 16-fold in HJV-expressing HepG2 cells but only by about 2-fold in cells transfected with either empty vector or G99V mutant HJV that does not bind BMPs. Further studies indicated that disruption of the HJV-neogenin interaction is responsible for a marked suppression of hepcidin expression. Moreover, in vivo studies showed that hepatic hepcidin mRNA could be significantly suppressed by blocking the interaction of HJV with full-length neogenin with a soluble fragment of neogenin in mice. Together, these results suggest that the HJV-neogenin interaction is required for the BMP-mediated induction of hepcidin expression when HJV is expressed. Combined with our previous studies, our results support that hepatic neogenin possesses two functions, mediation of cellular HJV release, and stimulation of HJV-enhanced hepcidin expression

    The relationship between sleep quality and daytime dysfunction among college students in China during COVID-19: a cross-sectional study

    Get PDF
    ObjectiveCollege Students’ sleep quality and daytime dysfunction have become worse since the COVID-19 outbreak, the purpose of this study was to explore the relationship between sleep quality and daytime dysfunction among college students during the COVID-19 (Corona Virus Disease 2019) period.MethodsThis research adopts the form of cluster random sampling of online questionnaires. From April 5 to 16 in 2022, questionnaires are distributed to college students in various universities in Fujian Province, China and the general information questionnaire and PSQI scale are used for investigation. SPSS26.0 was used to conduct an independent sample t-test and variance analysis on the data, multi-factorial analysis was performed using logistic regression analysis. The main outcome variables are the score of subjective sleep quality and daytime dysfunction.ResultsDuring the COVID-19 period, the average PSQI score of the tested college students was 6.17 ± 3.263, and the sleep disorder rate was 29.6%, the daytime dysfunction rate was 85%. Being female, study liberal art/science/ engineering, irritable (due to limited outdoor), prolong electronic entertainment time were associated with low sleep quality (p < 0.001), and the occurrence of daytime dysfunction was higher than other groups (p < 0.001). Logistics regression analysis showed that sleep quality and daytime dysfunction were associated with gender, profession, irritable (due to limited outdoor), and prolonged electronic entertainment time (p < 0.001).ConclusionDuring the COVID-19 epidemic, the sleep quality of college students was affected, and different degrees of daytime dysfunction have appeared, both are in worse condition than before the COVID-19 outbreak. Sleep quality may was inversely associated with daytime dysfunction

    An alternative magnesium-based root canal disinfectant: Preliminary study of its efficacy against Enterococcus faecalis and Candida albicans in vitro

    Get PDF
    Organisms invading root canal systems result in serious pulpal and periapical disease. To eliminate microorganisms and restrain secondary infections, dental materials with antibacterial properties are urgently needed in endodontics. Magnesium is considered as a promising biodegradable and biocompatible implant material. However, there are barely researches about its application in endodontic therapy. This work investigated the in vitro efficacy of magnesium powder against Enterococcus faecalis and Candida albicans compared with a common disinfectant, calcium hydroxide. With Calcium hydroxide served as a comparison it demonstrated the qualified antibacterial and anti-fungus properties of Mg as root canal disinfectant due to its high alkalinity of degradation, and the antimicrobial efficacy enhanced with the decreasing powder size

    Mechanisms of MAFG Dysregulation in Cholestatic Liver Injury and Development of Liver Cancer

    No full text
    BACKGROUND & AIMS:MAF bZIP transcription factor G (MAFG) is activated by the farnesoid X receptor to repress bile acid synthesis. However, expression of MAFG increases during cholestatic liver injury in mice and in cholangiocarcinomas. MAFG interacts directly with methionine adenosyltransferase α1 (MATα1) and other transcription factors at the E-box element to repress transcription. We studied mechanisms of MAFG up-regulation in cholestatic tissues and the pathways by which S-adenosylmethionine (SAMe) and ursodeoxycholic acid (UDCA) prevent the increase in MAFG expression. We also investigated whether obeticholic acid (OCA), an farnesoid X receptor agonist, affects MAFG expression and how it contributes to tumor growth in mice. METHODS:We obtained 7 human cholangiocarcinoma specimens and adjacent non-tumor tissues from patients that underwent surgical resection in California and 113 hepatocellular carcinoma (HCC) specimens and adjacent non-tumor tissues from China, along with clinical data from patients. Tissues were analyzed by immunohistochemistry. MAT1A, MAT2A, c-MYC, and MAFG were overexpressed or knocked down with small interfering RNAs in MzChA-1, KMCH, Hep3B, and HepG2 cells; some cells were incubated with lithocholic acid (LCA, which causes the same changes in gene expression observed during chronic cholestatic liver injury in mice), SAMe, UDCA (100 μM), or farnesoid X receptor agonists. MAFG expression and promoter activity were measured using real-time polymerase chain reaction, immunoblot, and transient transfection. We performed electrophoretic mobility shift, and chromatin immunoprecipitation assays to study proteins that occupy promoter regions. We studied mice with bile-duct ligation, orthotopic cholangiocarcinomas, cholestasis-induced cholangiocarcinoma, diethylnitrosamine-induced liver tumors, and xenograft tumors. RESULTS:LCA activated expression of MAFG in HepG2 and MzChA-1 cells, which required the activator protein-1, nuclear factor-κB, and E-box sites in the MAFG promoter. LCA reduced expression of MAT1A but increased expression of MAT2A in cells. Overexpression of MAT2A increased activity of the MAFG promoter, whereas knockdown of MAT2A reduced it. MAT1A and MAT2A had opposite effects on the activator protein-1, nuclear factor-κB, and E-box-mediated promoter activity. Expression of MAFG and MAT2A increased, and expression of MAT1A decreased, in diethylnitrosamine-induced liver tumors in mice. SAMe and UDCA had shared and distinct mechanisms of preventing LCA-mediated increased expression of MAFG. OCA increased expression of MAFG, MAT2A, and c-MYC, but reduced expression of MAT1A. Incubation of human liver and biliary cancer cells lines with OCA promoted their proliferation; in nude mice given OCA, xenograft tumors were larger than in mice given vehicle. Levels of MAFG were increased in human HCC and cholangiocarcinoma tissues compared with non-tumor tissues. High levels of MAFG in HCC samples correlated with hepatitis B, vascular invasion, and shorter survival times of patients. CONCLUSIONS:Expression of MAFG increases in cells and tissues with cholestasis, as well as in human cholangiocarcinoma and HCC specimens; high expression levels correlate with tumor progression and reduced survival time. SAMe and UDCA reduce expression of MAFG in response to cholestasis, by shared and distinct mechanisms. OCA induces MAFG expression, cancer cell proliferation, and growth of xenograft tumors in mice
    corecore