234 research outputs found

    InP membrane technology for photonics electronics convergence

    Get PDF
    InP membrane on silicon (IMOS) technology has shown high potential in realizing high-density photonic circuits with speed and energy benefits. Intrinsic active components offered by the InP membrane promise highest optoelectronic efficiencies. It can also be intimately integrated on electronics wafers with ultrashort interconnect lengths, paving a way towards the convergence of photonics and electronics

    Ultra-compact silicon nitride grating coupler for microscopy systems

    Get PDF
    Grating couplers have been widely used for coupling light between photonic chips and optical fibers. For various quantum-optics and bio-optics experiments, on the other hand, there is a need to achieve good light coupling between photonic chips and microscopy systems. Here, we propose an ultra-compact silicon nitride (SiN) grating coupler optimized for coupling light from a waveguide to a microscopy system. The grating coupler is about 4 by 2 mu m(2) in size and a 116 nm 1 dB bandwidth can be achieved theoretically. An optimized fabrication process was developed to realize suspended SiN waveguides integrated with these couplers on top of a highly reflective bottom mirror. Experimental results show that up to 53% (2.76 dB loss) of the power of the TE mode can be coupled from a suspended SiN waveguide to a microscopy system with a numerical aperture (NA) = 0.65. Simulations show this efficiency can increase up to 75% (1.25 dB loss) for NA = 0.95

    Dual-Band Dual-Mode Substrate Integrated Waveguide Filters with Independently Reconfigurable TE101 Resonant Mode

    Get PDF
    A novel perturbation approach using additional metalized via-holes for implementation of the dual-band or wide-band dual-mode substrate integrated waveguide (SIW) filters is proposed in this paper. The independent perturbation on the first resonant mode TE101 can be constructed by applying the proposed perturbation approach, whereas the second resonant mode TE102 is not affected. Thus, new kinds of dual-band or wide-band dual-mode SIW filters with a fixed or an independently reconfigurable low-frequency band have been directly achieved. In order to experimentally verify the proposed design method, four two-cavity dual-band SIW filters, which have different numbers of perturbation via-holes in each cavity, and a two-cavity dual-band SIW filter, which includes four via-holes and eight reconfigurable states in each cavity, are designed and experimentally assessed. The measured results indicate that the available frequency-ratio range from 1 to 1.3 can be realized by using four two-cavity dual-band SIW filters. The center frequency of the first band can be tuned from 4.61 GHz to 5.24 GHz, whereas the center frequency of the second one is fixed at around 6.18 GHz for the two-cavity dual-band SIW filter with four reconfigurable states via-holes. All the simulated and measured results show an acceptable agreement with the predicted data

    IMOS integrated photonics for free-space sensing and communications

    Get PDF
    Photonic integration in a thin InP membrane can offer optical antennas and interferometers monolithically integrated with lasers and detectors. Such approach, with high density and scalability, has shown high potential for applications of free-space sensing and communications.</p

    Deformable 3D Gaussians for High-Fidelity Monocular Dynamic Scene Reconstruction

    Full text link
    Implicit neural representation has opened up new avenues for dynamic scene reconstruction and rendering. Nonetheless, state-of-the-art methods of dynamic neural rendering rely heavily on these implicit representations, which frequently struggle with accurately capturing the intricate details of objects in the scene. Furthermore, implicit methods struggle to achieve real-time rendering in general dynamic scenes, limiting their use in a wide range of tasks. To address the issues, we propose a deformable 3D Gaussians Splatting method that reconstructs scenes using explicit 3D Gaussians and learns Gaussians in canonical space with a deformation field to model monocular dynamic scenes. We also introduced a smoothing training mechanism with no extra overhead to mitigate the impact of inaccurate poses in real datasets on the smoothness of time interpolation tasks. Through differential gaussian rasterization, the deformable 3D Gaussians not only achieve higher rendering quality but also real-time rendering speed. Experiments show that our method outperforms existing methods significantly in terms of both rendering quality and speed, making it well-suited for tasks such as novel-view synthesis, time synthesis, and real-time rendering

    Novel wafer-scale adhesive bonding with improved alignment accuracy and bond uniformity

    Get PDF
    We report a versatile method for improving post-bonding wafer alignment accuracy and BCB thickness uniformity in stacks bonded with soft-baked BCB. It is based on novel BCB-based micro-pillars that act as anchors during bonding. The anchor structures become a natural part of the bonding interface therefore causing minimal interference to the optical, electrical and mechanical properties of the bonded stack. We studied these properties for fixed anchor density and various anchor heights with respect to the adhesive BCB thickness. We demonstrated that the alignment accuracy can be improved by approximately an order of magnitude and approach the fundamental pre-bond alignment accuracy by the tool. We also demonstrated that this technique is effective for a large range of BCB thicknesses of 2–16 μm. Furthermore we observed that the thickness non-uniformities were reduced by a factor of 2–3 × for BCB thicknesses in the 8–16 μm range

    Diane Walch Reick v. Donald Thomas Reick : Brief of Respondent

    Get PDF
    Appeal from the order of the Second Judicial District Court for Weber County: The Honorable John F. Wahlquist, Judge
    • …
    corecore