84 research outputs found

    Protective effect of extract of Cordyceps sinensis in middle cerebral artery occlusion-induced focal cerebral ischemia in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ischemic hypoxic brain injury often causes irreversible brain damage. The lack of effective and widely applicable pharmacological treatments for ischemic stroke patients may explain a growing interest in traditional medicines. From the point of view of "self-medication" or "preventive medicine," <it>Cordyceps sinensis </it>was used in the prevention of cerebral ischemia in this paper.</p> <p>Methods</p> <p>The right middle cerebral artery occlusion model was used in the study. The effects of <it>Cordyceps sinensis </it>(Caterpillar fungus) extract on mortality rate, neurobehavior, grip strength, lactate dehydrogenase, glutathione content, Lipid Peroxidation, glutathione peroxidase activity, glutathione reductase activity, catalase activity, Na<sup>+</sup>K<sup>+</sup>ATPase activity and glutathione S transferase activity in a rat model were studied respectively.</p> <p>Results</p> <p><it>Cordyceps sinensis </it>extract significantly improved the outcome in rats after cerebral ischemia and reperfusion in terms of neurobehavioral function. At the same time, supplementation of <it>Cordyceps sinensis </it>extract significantly boosted the defense mechanism against cerebral ischemia by increasing antioxidants activity related to lesion pathogenesis. Restoration of the antioxidant homeostasis in the brain after reperfusion may have helped the brain recover from ischemic injury.</p> <p>Conclusions</p> <p>These experimental results suggest that complement <it>Cordyceps sinensis </it>extract is protective after cerebral ischemia in specific way. The administration of <it>Cordyceps sinensis </it>extract significantly reduced focal cerebral ischemic/reperfusion injury. The defense mechanism against cerebral ischemia was by increasing antioxidants activity related to lesion pathogenesis.</p

    Anti-inflammatory effects of Neurotoxin-Nna, a peptide separated from the venom of Naja naja atra

    Get PDF
    BACKGROUND: Neurotoxin-Nna (NT), an analgesic peptide separated from the venom of Naja naja atra, has reported to have an exceptional specificity to block transmission of the nerve impulse by binding to the α- subunit of the nicotinic acetylcholine receptor in the membrane. However, little information is available on the anti-inflammatory effects of NT. Therefore, the anti-inflammatory activity of Neurotoxin-Nna was investigated in this study. METHODS: The anti-inflammatory effects of NT were evaluated by measuring its influence on several crucial factors in inflammatory pathways, including total antioxidant activity, antinociceptive effects in vivo, nuclear factor kappa B (NF-κB), polymorphonuclear cells (PMN), inducible nitric oxide synthase (iNOS), adhesion molecule (ICAM-1) and tactile hyperalgesia. RESULTS: NT treatment decreased the levels of tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1β). NT treatment decreased the total antioxidant status (TAOS) and reduced CFA-induced tactile hyperalgesia in a dose-dependent manner. NT significantly inhibited regulation of NF-kappaB activation and the production of IL-1β, TNF-α, iNOS and CAM-1. Moreover, NT suppressed infiltration of PMN. CONCLUSIONS: Our results showed that NT reduced CFA-induced tactile hyperalgesia through inhibition inflammatory pathways in experimental inflammatory rats

    Vanadium-Enriched Cordyceps sinensis, a Contemporary Treatment Approach to Both Diabetes and Depression in Rats

    Get PDF
    This article studies a contemporary treatment approach toward both diabetes and depression management by vanadium-enriched Cordyceps sinensis (VECS). Streptozotocin-induced hyperglycemic rats were used in the study. After the rats were administered with VECS, a significant reduction in blood glucose levels was seen (P < .05) and the levels of serum insulin increased significantly (P < .05). At the same time, the study revealed a significant decrease in immobility with a corresponding increase in the swimming and climbing behavior in hyperglycemic rats following VECS treatment. The results described herein demonstrate that VECS is a contemporary treatment approach that advocates an aggressive stance toward both diabetes and depression management

    Enhanced UV Light emission from Silicon nanoparticles induced by Au ion implantation

    Full text link
    Study of light emitting silicon fabricated by ion implantation.Comment: G-COE Conference - Kyoto 2008 abstrac

    Advances of the small molecule drugs regulating fibroblast-like synovial proliferation for rheumatoid arthritis

    Get PDF
    Rheumatoid arthritis (RA) is a type of chronic autoimmune and inflammatory disease. In the pathological process of RA, the alteration of fibroblast-like synoviocyte (FLS) and its related factors is the main influence in the clinic and fundamental research. In RA, FLS exhibits a uniquely aggressive phenotype, leading to synovial hyperplasia, destruction of the cartilage and bone, and a pro-inflammatory environment in the synovial tissue for perpetuation and progression. Evidently, it is a highly promising way to target the pathological function of FLS for new anti-RA drugs. Based on this, we summed up the pathological mechanism of RA-FLS and reviewed the recent progress of small molecule drugs, including the synthetic small molecule compounds and natural products targeting RA-FLS. In the end, there were some views for further action. Compared with MAPK and NF-κB signaling pathways, the JAK/STAT signaling pathway has great potential for research as targets. A small number of synthetic small molecule compounds have entered the clinic to treat RA and are often used in combination with other drugs. Meanwhile, most natural products are currently in the experimental stage, not the clinical trial stage, such as triptolide. There is an urgent need to unremittingly develop new agents for RA

    Rapid customization system for 3D-printed splint using programmable modeling technique – a practical approach

    No full text
    Abstract Background Traditional splinting processes are skill dependent and irreversible, and patient satisfaction levels during rehabilitation are invariably lowered by the heavy structure and poor ventilation of splints. To overcome this drawback, use of the 3D-printing technology has been proposed in recent years, and there has been an increase in public awareness. However, application of 3D-printing technologies is limited by the low CAD proficiency of clinicians as well as unforeseen scan flaws within anatomic models. A programmable modeling tool has been employed to develop a semi-automatic design system for generating a printable splint model. The modeling process was divided into five stages, and detailed steps involved in construction of the proposed system as well as automatic thickness calculation, the lattice structure, and assembly method have been thoroughly described. The proposed approach allows clinicians to verify the state of the splint model at every stage, thereby facilitating adjustment of input content and/or other parameters to help solve possible modeling issues. A finite element analysis simulation was performed to evaluate the structural strength of generated models. A fit investigation was applied on fabricated splints and volunteers to assess the wearing experience. Results Manual modeling steps involved in complex splint designs have been programed into the proposed automatic system. Clinicians define the splinting region by drawing two curves, thereby obtaining the final model within minutes. The proposed system is capable of automatically patching up minor flaws within the limb model as well as calculating the thickness and lattice density of various splints. Large splints could be divided into three parts for simultaneous multiple printing. Conclusions This study highlights the advantages, limitations, and possible strategies concerning application of programmable modeling tools in clinical processes, thereby aiding clinicians with lower CAD proficiencies to become adept with splint design process, thus improving the overall design efficiency of 3D-printed splints

    Feasibility study applying a parametric model as the design generator for 3D–printed orthosis for fracture immobilization

    No full text
    Abstract Background Applying 3D printing technology for the fabrication of custom-made orthoses provides significant advantages, including increased ventilation and lighter weights. Currently, the design of such orthoses is most often performed in the CAD environment, but creating the orthosis model is a time-consuming process that requires significant CAD experience. This skill gap limits clinicians from applying this technology in fracture treatment. The purpose of this study is to develop a parametric model as the design generator for 3D–printed orthoses for an inexperienced CAD user and to evaluate its feasibility and ease of use via a training and design exercise. Results A set of automatic steps for orthosis modeling was developed as a parametric model using the Visual Programming Language in the CAD environment, and its interface and workflow were simplified to reduce the training period. A quick training program was formulated, and 5 participants from a nursing school completed the training within 15 mins. They verified its feasibility in an orthosis design exercise and designed 5 orthoses without assistance within 8 to 20 mins. The few faults and program errors that were observed in video analysis of the exercise showed improvable weaknesses caused by the scanning quality and modeling process. Conclusions Compared to manual modeling instruction, this study highlighted the feasibility of using a parametric model for the design of 3D–printed orthoses and its greater ease of use for medical personnel compared to the CAD technique. The parametric model reduced the complex process of orthosis design to a few minutes, and a customized interface and training program accelerated the learning period. The results from the design exercise accurately reflect real-world situations in which an inexperienced user utilizes a generator as well as demonstrate the utility of the parametric model approach and strategy for training and interfacing

    Synthesis of New Chiral Benzimidazolylidene–Rh Complexes and Their Application in Asymmetric Addition Reactions of Organoboronic Acids to Aldehydes

    No full text
    A series of novel chiral N-heterocyclic carbene rhodium complexes (NHC–Rh) based on benzimidazole have been prepared, and all of the NHC–Rh complexes were fully characterized by NMR and mass spectrometry. These complexes could be used as catalysts for the asymmetric 1,2-addition of organoboronic acids to aldehydes, affording chiral diarylmethanols with high yields and moderate enantioselectivities

    Nanoparticle-mediated delivery of Neurotoxin-II to the brain with intranasal administration: an effective strategy to improve antinociceptive activity of Neurotoxin

    No full text
    Background: Neurotoxin-II (NT-II), an analgesic peptide which was separated from the venom of Naja naja atra, is endowed an exceptional specificity of action that block transmission of the nerve impulse by binding to the acetylcholine receptor in the membrane. However, it has limited permeability across the blood-brain barrier (BBB) after intravenously (i.v.) injection
    corecore