52 research outputs found

    High-intensity interval training and moderate-intensity continuous training attenuate oxidative damage and promote myokine response in the skeletal muscle of ApoE KO mice on high-fat diet

    Get PDF
    The purpose of this study was to investigate the effects of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on the skeletal muscle in Apolipoprotein E knockout (ApoE KO) and wild-type (WT) C57BL/6J mice. ApoE KO mice fed with a high-fat diet were randomly allocated into: Control group without exercise (ApoE−/− CON), HIIT group (ApoE−/− HIIT), and MICT group (ApoE−/− MICT). Exercise endurance, blood lipid profile, muscle antioxidative capacity, and myokine production were measured after six weeks of interventions. ApoE−/− CON mice exhibited hyperlipidemia and increased oxidative stress, compared to the WT mice. HIIT and MICT reduced blood lipid levels, ROS production, and protein carbonyl content in the skeletal muscle, while it enhanced the GSH generation and potently promoted mRNA expression of genes involved in the production of irisin and BAIBA. Moreover, ApoE−/− HIIT mice had significantly lower plasma HDL-C content, mRNA expression of MyHC-IIx and Vegfa165 in EDL, and ROS level; but remarkably higher mRNA expression of Hadha in the skeletal muscle than those of ApoE−/− MICT mice. These results demonstrated that both exercise programs were effective for the ApoE KO mice by attenuating the oxidative damage and promoting the myokines response and production. In particular, HIIT was more beneficial to reduce the ROS level in the skeletal muscle

    Object class recognition using combination of colour dense SIFT and texture descriptors

    Get PDF
    Object class recognition has recently become one of the most popular research fields. This is due to its importance in many applications such as image classification, retrieval, indexing, and searching. The main aim of object class recognition is determining how to make computers understand and identify automatically which object or scene is being displayed on the image. Despite a lot of efforts that have been made, it still considered as one of the most challenging tasks, mainly due to inter-class variations and intra-class variations like occlusion, background clutter, viewpoint changes, pose, scale and illumination. Feature extraction is one of the important steps in any object class recognition system. Different image features are proposed in the literature review to increase categorisation accuracy such as appearance, texture, shape descriptors. In this paper, we propose to combine different descriptors which are dense colour scale-invariant feature transform (dense colour SIFT) as appearance descriptors with different texture descriptors. The colour completed local binary pattern (CCLBP) and completed local ternary pattern (CLTP) are integrated with dense colour SIFT due to the importance of the texture information in the image. Using different pattern sizes to extract the CLTP and CCLBP texture descriptors will help to find dense texture information from the image. Bag of features is also used in the proposed system with each descriptor while the late fusion strategy is used in the classification stage. The proposed system achieved high recognition accuracy rate when applied in some datasets, namely SUN-397, OT4N, OT8, and Event sport datasets, which accomplished 38.9%, 95.9%, 89.02%, and 88.167%, respectively

    Determination of Gold in Ore Samples by Flame Atomic Absorption Spectrometry of Sealed Dissolution after Adsorption using Polyurethane Foam

    No full text
    This is an essay in the field of mineral analysis. After the samples were roasted and digested in 50% aqua regia by sealed dissolution,the gold in ore samples were adsorbed by 0.25g polyurethane foam during the oscillating, the polyurethane foam was washed to removing the slurry and acid, and gold was eluted out from polyurethane foam with 1% thiourea. Thus, a determination method of gold in ore samples by flame atomic absorption spectrometry of sealed dissolution after adsorption with polyurethane foam was established.The roasting method of some special gold ore samples was discussed.The conditions of sealed dissolution time, foam pretreatment, adsorption temperature and solution temperature were optimized, the results showed that when the sealed dissolution for 2 h, the gold was completely decomposed. After the polyurethane foam was treated with 5%HCl, the adsorption recoveries of gold could reach 95% at room temperature, the temperature of solution and standard solution shall be consistent with room temperature during determination. The calibration curve was prepared by foam adsorption and desorption process. Under the selected experimental conditions, the limit of detection was 0.13 μg/g, the limit of quantification was 0.43 μg/g, and the upper limit of determination was 80 μg/g. The standard recoveries were between 98.7% and 101%, the relative standard deviations(RSD, n=5) were between 1.10% and 2.07%. Verified by the determination of gold ore certified reference materials, the results were basically consistent with the certified value

    Hybrid Si nanocones/PEDOT : PSS solar cell

    No full text
    Periodic silicon nanocones (SiNCs) with different periodicities are fabricated by dry etching of a Si substrate patterned using monolayer polystyrene (PS) nanospheres as a mask. Hybrid Si/PEDOT:PSS solar cells based on the SiNCs are then fabricated and characterized in terms of their optical, electrical, and photovoltaic properties. The optical properties of the SiNCs are also investigated using theoretical simulation based on the finite element method. The SiNCs reveal excellent light trapping ability as compared to a planar Si substrate. It is found that the power conversion efficiency (PCE) of the hybrid cells decreases with increasing periodicity of the SiNCs. The highest PCE of 7.1% is achieved for the SiNC hybrid cell with a 400-nm periodicity, due to the strong light trapping near the peak of the solar spectrum and better current collection efficiency.Published versio

    Nutrient Composition of Germinated Foxtail Millet Flour Treated with Mixed Salt Solution and Slightly Acidic Electrolyzed Water

    No full text
    Germination of millet can improve its consumption quality, optimize its nutritional composition, and promote the accumulation of functional components such as γ-aminobutyric acid (GABA). In the present study, foxtail millet was germinated with tap water, a mixed salt solution of 7.5 mmol/L NaCl and 15 mmol/L CaCl2, and slightly acidic electrolyzed water (SAEW) with three available chlorine concentrations (ACCs; 10.92, 20.25, and 30.35 mg/L). The effects of the salt solution and SAEW on the germination of foxtail millet and the GABA, crude protein, and amino acid composition of the germinated millet flour were analyzed. The results showed that the salt solution and SAEW treatments promoted the growth of millet sprouts, contributed to the accumulation of GABA in germinated millet flour, and optimized the protein and amino acid composition. The GABA content of germinated foxtail millet flour treated with salt solution for 60 h (336.52 mg/100 g) was 29.5 times higher than that of ungerminated millet flour. In conclusion, the highest GABA content and amino acid scores of germinated millet flour obtained by germination treatment with salt solution at 25 °C and 86% humidity for 60 h were more acceptable for human nutritional requirements

    Programmed-triboelectric nanogenerators - A multi-switch regulation methodology for energy manipulation

    No full text
    10.1016/j.nanoen.2020.105241NANO ENERGY7

    A subranging nonuniform sampling memristive neural network-based analog-to-digital converter

    Get PDF
    This work presents a novel 4-bit subranging nonuniform sampling (NUS) memristive neural network-based analog-to-digital converter (ADC) with improved performance trade-off among speed, power, area, and accuracy. The proposed design preserves the memristive neural network calibration and utilizes a trainable memristor weight to adapt to device mismatch and increase accuracy. Rather than conventional binary searching, we adopt quaternary searching in the ADC to realize subranging architecture’s coarse and fine bits determination. A level-crossing nonuniform sampling (NUS) is introduced to the proposed ADC to enhance the ENOB under the same resolutions, power, and area consumption. Area and power consumption are reduced through circuit sharing between different stages of bit determination. The proposed 4-bit ADC achieves a highest ENOB of 5.96 and 5.6 at cut-off frequency (128 MHz) with power consumption of 0.515 mW and a figure of merit (FoM) of 82.95 fJ/conv
    corecore