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A B S T R A C T

This work presents a novel 4-bit subranging nonuniform sampling (NUS) memristive neural network-based
analog-to-digital converter (ADC) with improved performance trade-off among speed, power, area, and
accuracy. The proposed design preserves the memristive neural network calibration and utilizes a trainable
memristor weight to adapt to device mismatch and increase accuracy. Rather than conventional binary
searching, we adopt quaternary searching in the ADC to realize subranging architecture’s coarse and fine bits
determination. A level-crossing nonuniform sampling (NUS) is introduced to the proposed ADC to enhance the
ENOB under the same resolutions, power, and area consumption. Area and power consumption are reduced
through circuit sharing between different stages of bit determination. The proposed 4-bit ADC achieves a
highest ENOB of 5.96 and 5.6 at cut-off frequency (128 MHz) with power consumption of 0.515 mW and a
figure of merit (FoM) of 82.95 fJ∕conv.
. Introduction

As machine learning (ML) develops rapidly in the recent era, more
nd more complex algorithms with a large number of parameters
ave emerged, and the need for highly efficient hardware acceler-
tors such as in-memory or neuromorphic platforms have become
minent [1]. The emergence of resistive switching (RS) memory tech-
ologies brings new opportunities to rethink the design of the current
omputing circuits and systems. Not only using these emerging tech-
ologies, specifically memristor crossbar arrays can significantly accel-
rate vector–matrix multiplication (VMM) as the most important and
idely used mathematics operations within current ML algorithms [2],
ut also utilizing them as the new circuit component and building
lock within the design of the expensive power and area hungry CMOS
eripheral circuits like digital to analog converter (DAC) and ana-
og to digital converter (ADC) will create more efficient mixed-signal
ircuits [3]. To make a smooth and accurate input–output transition
etween real and virtual worlds, the analog-to-digital converter (ADC)
s an indispensable linked component. With the continuing require-
ents of fast, low-powered, and precise mixed-signal devices from their

pplied field (oscilloscopes, high-resolution display, headphones, etc.),
n adequate high-speed, and low-powered ADC with high accuracy is
ecessary [4].
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Conventional uniform sampling ADCs inevitably have some inher-
ent trade-offs among various factors. High-speed ADCs, like flash and
pipeline, are limited in accuracy and effective resolutions, affected by
the mismatch of resistor ladder or capacitors [5,6]. SAR ADC with high
resolutions has a lower processing speed due to its binary searching
mechanism and consumes more power if the sampling speed exceeds
100 MS/s [7].

Recently, a novel efficient ADC [8] has been proposed by having
a trade-off on the speed, power, and accuracy utilizing the memristor-
based neuromorphic architecture to ensure the ADC’s accuracy through
training of the memristive weights. Using the neuromorphic architec-
ture, this ADC can achieve high-speed conversion with high accuracy by
its controllable weights and training algorithm. However, in Fig. 1(a),
with the problems that whenever the outputs bits need to be doubled,
the number of weights increases quadratically, and the number of com-
putation neurons also needs to be doubled, which consumes significant
area and will be challenging to incorporate into ultra-dense memory
arrays for sensing applications. The binary searching mechanism makes
the weights and neurons’ number increase quadratically and linearly
according to their resolutions, making the area and power increase
substantially [8].

Additionally, another factor that limited the conventional ADCs’
effective resolutions is its large quantization noise caused by uni-
form sampling. While the input signal is replicated to the output
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Fig. 1. (a) Binary search ANN structure pipeline ADC [8]. (b) The time domain digital output by ideal uniform sampling and nonuniform sampling 4 bit ADC. (c) The spectrum
f ideal uniform sampling and nonuniform sampling 4 bit ADC, where the nonuniform one has a lower noise floor than the uniform one (d) Memristor crossbar (e) The proposed
odel’s neural network with the relation between each weight, 𝑊𝑖, 𝑛𝑖 and inputs. (f) General ANN structure of proposed ADC. (g) The quaternary search mechanism with all

possible combinations for 4 bit ADC.
w
a
t
p
c
d
q
c
i
t
(
i
i
t
(
t
c
i
a

a
c
o
b
m
𝐼
a
t

at every integer time of the sampling period, some samples are in-
evitably redundant or missing the edge crossing of input, as shown
in Fig. 1(b) [9]. Rather than sampling in a uniform frequency, the
non-uniform sampling (NUS) technique is proposed [9] and a sub-
ranging based architecture of which is implemented [10]. The NUS’s
unique property allows the ADC to sample whenever the input signal
is changed and thus makes the sampling more efficient and accurate.
This leads to an alias-free spectral and higher signal-to-noise ratio
(SNR) compared to the conventional ADC under the same number of
quantization levels as long as it meets the Nyquist rate [11], which is
shown in Fig. 1(c) that the ideal non-uniform sampling spectrum has
a much lower noise floor compared to uniform sampling. On the other
hand, sub-ranging architecture can further alleviate the power and area
consumption by repeatedly utilizing the computation neurons and their
coarse and fine stage at different quantization levels.

Intriguing from the existing solutions, the proposed 4 bits ADC is
designed as a general-purpose ADC and is aimed to provide another
optimal solution for solving the ADC’s speed, power, and accuracy
tradeoff through:
(1) Memristive weight crossbar and ANN calibration (Training) for
fabrication mismatch and adapt environmental variation,
(2) Level-crossing NUS technique with oversampling for a high effective
number of bits (ENOB) under the same resolutions [12],
(3) Subranging architecture and quaternary search mechanism to speed
the design while maintaining the low area and power consumption.
The rest of the paper will first introduce each part of the circuit and its
mechanism, describe the main working and training process, conduct
various evaluations to validate the proposed design, and generalize the
proposed ADC for higher resolutions.

2. Mechanism

2.1. Quaternary search and weight crossbar

The proposed design adopts quaternary searching that determines
two bits together to achieve coarse and fine bits determination. Using
 𝐼

2

4 bits for example, the bits 𝐷3 and 𝐷2 are coarse quantize while 𝐷1
and 𝐷0 are fine quantize,
{

𝐃3 = 𝝁(𝐼𝑖𝑛 − 8𝐼𝑟𝑒𝑓 )
𝐃2 = 𝝁(𝐼𝑖𝑛 − 12𝐼𝑟𝑒𝑓 )

‖

‖

‖

(𝝁(𝐼𝑖𝑛 − 4𝐼𝑟𝑒𝑓 )&!𝐃3)
(1)

⎧

⎪

⎨

⎪

⎩

𝐼𝑖𝑛2 = 𝐼𝑖𝑛 − 8𝐃3𝐼𝑟𝑒𝑓 − 4𝐃2𝐼𝑟𝑒𝑓
𝐃1 = 𝝁(𝐼𝑖𝑛2 − 2𝐼𝑟𝑒𝑓 )
𝐃0 = 𝝁(𝐼𝑖𝑛2 − 3𝐼𝑟𝑒𝑓 )‖‖

‖

(𝝁(𝐼𝑖𝑛2 − 𝐼𝑟𝑒𝑓 )&!𝐃1)
(2)

here 𝐈𝑖𝑛 is the input current that represents 𝐷3𝐷2𝐷1𝐷0 equal to the
nalog input voltage 𝑉𝑖𝑛 divide 𝑅𝑖𝑛 and 𝐼𝑟𝑒𝑓 is the reference current
hat represent one LSB. 𝜇(⋅) is the sigmoid function that is 1 if the
arameter is positive and 0 if the parameter is negative. The full-scale
urrents of a 4 bits ADC are 16𝐼𝑟𝑒𝑓 . 𝐷3𝐷2, at the 2nd stage, can be
etermined independently without other bits by comparing 𝐼𝑖𝑛 with
uarter, half, or three-quarters of the full-scale current (coarse). Then
orresponding 8 × 𝐷3 + 4 × 𝐷2 times of 𝐼𝑟𝑒𝑓 will be minus from the
nput current to generate an intermediate current 𝐼𝑖𝑛2 and is replicated
hrough the stage converter, composed by a trans-impedance amplifier
TIA) and an inverter which both use the cascode inverter op-amp
n Fig. 2(f) with 𝐶𝑜𝑠, for multiple branches used. 𝐷1𝐷0 at 1st stage
s determined similarly as 𝐷3𝐷2 except using 𝐼𝑖𝑛2 to compare with
he one-sixteenth, one-eighth, and three-sixteenth of full-scale current
fine). To achieve the current summation, the proposed design adopted
he crossbar-like weight architecture shown in Fig. 1(d) to sum the
urrents from input and different weights. The detailed implementation
s shown in Fig. 2(a). Fig. 1(g) shows this gradual approximation with
ll of the possible combinations for 4 bits.

While the realistic circuit is not a linear-time-invariant (LTI) system
nd various conditions (device mismatch, temperature etc.) affects the
onverter’s accuracy, an appropriate method that generates n times
f 𝐼𝑟𝑒𝑓 to make neuron have expected decision is crucial. Inspired
y recent discoveries on memristor neural networks [13,14], a 2T1R
emristor weight is utilized to bias different 𝑉𝑏𝑙𝑖 to different times of
𝑟𝑒𝑓 as shown in Fig. 2(c). Where for the weight 𝑊𝑗 , 𝐼𝑊𝑗

= 𝑗 × 𝐼𝑟𝑒𝑓 ,
nd 𝑒𝑗 is the weight’s control signal. Assumed both MOSFETs are in
he linear region,
𝑊𝑗
= 𝑉𝑏𝑙𝑖 ⋅𝐺𝑗 (𝑠) (3)
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Fig. 2. Over Fig. 2, 𝑖 stands for the 𝑖th stage, 𝑗 stands for the 𝑗th weight, and 𝑘 stands for the 𝑘th neuron. (a) The detailed structure of ADC with synapse weight 𝑊𝑗 , computation
neuron 𝑁𝑘, and feedback 𝐹𝐵𝑖. (b) Neuron circuit with common neuron 𝑁𝑘 and edge detection neuron 𝑁𝑒. (c) 2T1R weight unit circuit 𝑊𝑗 (d) Feedback circuit of stage 𝑖. (e)
The finite state machine (FSM) of ADC with two states each for one stage. (f) Circuit of cascode inverter amplifier used in neuron and stage converter, where 𝐶𝑜𝑠 is only for
stage converter to boost the gain. (g) The state variable 𝑠𝑗 ’s change with respect to different 𝑒𝑗 and 𝑉𝑏𝑙𝑖. (h) The prediction mechanism of 𝐷3−0_𝑝𝑟𝑒 during the level crossing. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
where 𝑉𝑏𝑙𝑖 is the corresponding 𝑖th stage bit line voltage, 𝐺𝑗 (𝑠) is the
conductance of memristor in 𝑊𝑗 , and 𝑠 is the state variable control the
memristor conductance. The conductance of MOSFET is ignored here
since it is much bigger than that of the memristor. Rather than utilizing
the memristor by directly programming it to certain discrete stable
states (which depend on the memristor’s precision), the memristor
here is described in the VTEAM model where its state variable, 𝑠,
is continuous [15]. Hence, the memristor can be biased to a certain
desired state (and desired resistance) from the initial state by large
writing voltage on two sides of the memristor and writing time.

The weights are controlled by 𝑉𝑏𝑙𝑖 and 𝑒𝑗 from the feedback circuit.
And when different 𝑉𝑏𝑙𝑖 and 𝑒𝑗 are operated on the MOSFET, different
voltages will be applied on the memristor to implement different re-
quirements. The feedback control signal 𝑒𝑗 and 𝑉𝑏𝑙𝑖 will generally be in
these four states:

(1) 𝑒𝑗 = 0, 𝑉𝑏𝑙𝑖 = 𝑉𝑙𝑜𝑤𝑖, both MOSFETs are nonconducting, the
voltage on two sides of the memristor is approximately 0, the
state variable of the memristor does not change, 𝐼𝑊𝑗

= 0.
(2) 𝑒𝑗 = +Q, 𝑉𝑏𝑙𝑖 = 𝑉𝑙𝑜𝑤𝑖, only NMOS are conducting in the linear

region, the voltage on two sides of the memristor is greater than
𝑉𝑜𝑛 but smaller than 0, state variable of memristor does not
change, 𝐼𝑊𝑗

< 0.
(3) 𝑒𝑗 = +Q, 𝑉𝑏𝑙𝑖 = 𝑉ℎ𝑖𝑔ℎ𝑖, only NMOS are conducting in the linear

region, the voltage on two sides of the memristor is smaller than
𝑉𝑜𝑛, state variable of memristor change, 𝐼𝑊𝑗

< 0.
(4) 𝑒𝑗 = −Q, 𝑉𝑏𝑙𝑖 = 𝑉ℎ𝑖𝑔ℎ𝑖, only PMOS are conducting in the linear

region, the voltage on two sides of the memristor is greater than
𝑉𝑜𝑓𝑓 , state variable of memristor change, 𝐼𝑊𝑗

> 0.

Fig. 2(g) shows the state variable changes under different 𝑒𝑗 and 𝑉𝑏𝑙𝑖.

2.2. Feedback circuits

The proposed design’s network structure is shown in Fig. 1(e),
which mainly contains two layers. The first layer (coarse stage) com-
putes the result through input, and the first layer weights to get 𝐷3𝐷2 as
coarse classification on the analog input. The second layer (fine stage)
3

will then utilize the output from the first stage after the stage converter
to finely classify the input voltage to get 𝐷1𝐷0. Fig. 1(f) shows the
structure of the circuit in another way to explain how different parts
of the circuit collaborate. The analog input will be computed by the
weights crossbar and sent the analog computing result to neurons.
The neurons will then convert their input to digital results. Finally,
the digital result will be given to the feedback to generate the digital
output. As the controlling of the ADC, the feedback will send either
the control signal or the training signal to the weight crossbar during
working or training mode.

The feedback circuit of the proposed design is organized per stage
to provide the control and error signals for the corresponding synapse
weight. As described in Fig. 2(d), a feedback circuit of stage 𝑖 is
organized as follows: two output SR-latch storing bits 𝐷2𝑖−1 and 𝐷2𝑖−1+1
with enable signal 𝑉𝑠𝑖_𝑛 which only receive new digital output during
their stage, two training SR-latch with enable signal 𝑉𝑚𝑜𝑑𝑒_𝑖 to store the
reading result during the training mode to output steady difference,
two digital subtractors calculating the difference between actual results
(D) and expected results (T), blue multiplexers for mode selections
(change between training and working mode), pink multiplexers for
operating stages selections (stage 1 or 2), and purple multiplexers to
have a prediction on next digit when the level is crossing.

2.3. Computation neuron

The computation neuron 𝑁𝑘 in Fig. 2(b) comprises a TIA and an
inverter. It transforms the summing current 𝐼𝑘 that represents the
analog calculation result from the weight crossbar to digital output.
The edge detection neuron, 𝑁𝑒, has one more multiplexer that can be
used to select which edge it needs to detect: upper or lower, through
the control of 𝑉𝑒_𝑠𝑒𝑙. More information about circuit detail is shown in
Table 1.

3. Working process

The proposed ADC has two modes, with the working mode that
transforms input analog signal to digital output continuously, and the
training mode that uses the alternative training mechanism to train the
synapse weights to the desired value.
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Table 1
Circuit parameter.

Circuit part Type Parameter Value

Weight NMOS W/L 10
PMOS W/L 20
Memristor [16] 𝑉𝑜𝑛∕𝑜𝑓𝑓 −0.3/0.4 V

𝑅𝑜𝑛∕𝑜𝑓𝑓 2k/100 kΩ
𝑘𝑜𝑛∕𝑜𝑓𝑓 −4.8/2.8 mm/s
𝛼𝑜𝑛∕𝑜𝑓𝑓 3/1
Precision 6

Neuron Amplifier 𝑉𝑑𝑑 0.6 V
𝐼𝑏𝑖𝑎𝑠 16 μA
Gain 59.2 dB
BW 1.42 GHz

Settling time 𝑇𝑠 3 ns

Stage converter Amplifier 𝑉𝑑𝑑 0.9 V
𝐼𝑏𝑖𝑎𝑠 120 μA
𝐶𝑜𝑠+∕− 10𝑝𝑓 ic = −.25/.15 V
Gain 54.5 dB
BW 7.46 GHz

Settling time 𝑇𝑠 6 ns

ADC Input resistor 𝑅𝑖𝑛1 120 kΩ
𝑅𝑖𝑛2 11.1 kΩ

Bitline voltage 𝑉𝑏𝑙1 0.1/0.43 V
𝑉𝑏𝑙2 0.05/0.49 V

FSM 𝑇𝑠𝑡𝑎𝑡𝑒1 3 ns
𝑇𝑠𝑡𝑎𝑡𝑒2 9 ns
𝑇𝑡𝑟𝑎𝑖𝑛 2 μs

NMOS W/L 20/3
Reference current 𝐼𝑟𝑒𝑓 1 μA

3.1. Working mode

The proposed ADC in working mode is controlled by the finite state
machine (FSM), as stated in Fig. 2(e). It mainly has two states: state
1 for 2nd stage bits 𝐷3𝐷2 determinations (coarse) and state 2 for 1st
tage bits 𝐷1𝐷0 determinations (fine). The circuit is restarted first by
unning state 1 and then state 2. As shown in Fig. 3, during state 1,
𝑠2_𝑛 = +𝑉𝑑𝑑 indicates that all summing currents to neurons are from
nd stage and 2nd stage’s SR latch is enabled to receive the digital
utputs of 𝐷3𝐷2. All 1st stage’s MOSFET is closed so that 𝐼𝑖𝑛2 and all
𝑤𝑗 at 1st stage is zero to avoid interruption. Proceeding to the state
, 𝑉𝑠1_𝑛 = +𝑉𝑑𝑑 and 𝑉𝑠2_𝑛 = −𝑉𝑑𝑑 . At stage converter’s multiplexers,
orresponding 𝑉𝑤𝑗_𝑠1 = +𝑉𝑑𝑑 and 𝐼𝑖𝑛2 is calculated by summing the
𝑤𝑗 and 𝐼𝑖𝑛. 𝐼𝑖𝑛2 is then replicated through the amplifiers and 𝑅𝑖𝑛2 for
1𝐷0 determinations. 1st stage’s SR latch is enabled at state 2 and

ontinuously receives the digital output of 𝐷1𝐷0. After restart, the FSM
ill stick in state 2 to track the 𝐷1𝐷0 bits until a level-crossing is
etected, where 𝑉𝑏𝑜𝑢𝑛𝑑 = 1 as illustrated in Fig. 2(e). During the tracking
f 𝐷1𝐷0, an appropriate edge is selected and tracked whether the edge

is crossed, as shown in Fig. 3,

(1) When 𝐷1𝐷0 = 11, an upper edge is going to be touched, 𝑉𝑒_𝑠𝑒𝑙 =
𝑢𝑝𝑝𝑒𝑟, and the edge of current 𝐷3𝐷2 plus one is selected. This
edge comparison is calculated by borrowing the result from 2nd
stage, where corresponding 𝑉𝑤𝑗_𝑒 = +𝑉𝑑𝑑 at stage converter
multiplexers and the summing currents of 𝐼𝑤𝑗 and 𝐼𝑖𝑛 flow to
the edge detection neuron 𝑁𝑒.

(2) When 𝐷1𝐷0 = 00, an lower edge is going to be touched, 𝑉𝑒_𝑠𝑒𝑙 =
𝑙𝑜𝑤𝑒𝑟. The lower edge comparison is conducted by comparing
the 𝑉𝑖𝑛2 with 0.

(3) Otherwise, 𝐷1𝐷0 is away from the edge and 𝑉𝑏𝑜𝑢𝑛𝑑 is set to 0.

When a level crosses and 𝑉𝑏𝑜𝑢𝑛𝑑 = 1, the circuit will jump back to
state 1 and then state 2 to redetermine all 4 bits, and 𝑉𝑏𝑜𝑢𝑛𝑑 will be held
in 1 until state two is stabilized. The selection signals at stage converter
multiplexers are all −𝑉𝑑𝑑 if they are not explicitly stated. During the
level-crossing, where state 1 and state 2 are re-executed, the output SR-

latch in Fig. 2(d) will receive predicted bits 𝐷3−0_𝑝𝑟𝑒 rather than getting

4

Fig. 3. Flow chart of ADC under working mode, with the detailed description on state
1&2 and edge detection.

𝑥1𝑥0 from neuron to avoid glitches due to the destabilization between
states. The prediction logic is shown in Fig. 2(h).

3.2. Training mode

The proposed ADC adopts an alternative training mechanism to
train the synapse weights to successively approximate the desired value
where the training and working mode is switched alternatively to make
sure the training result is correct. Each weight is trained separately
and follows the same process. To train the weight 𝑊𝑗 at 2nd stage,
corresponding training sets 𝑉𝑖𝑛 and 𝑇3𝑇2 is input to weight crossbar
and 𝐹𝐵2, and all MOSFET in 1st stage is closed to avoid interruption.
Firstly, described in Fig. 4(a), 𝑉𝑚𝑜𝑑𝑒2 = +𝑉𝑑𝑑 and 𝑉𝑏𝑙2 = 𝑉𝑙𝑜𝑤 to run the
ADC in state 1 on working mode to read the weight’s current calculation
result. The digital subtractor will evaluate the difference 𝐷3 − 𝑇3 and
𝐷2 − 𝑇2 simultaneously. If the difference is 0, the training is finished.

therwise, the circuit will enter training mode, 𝑉𝑚𝑜𝑑𝑒2 = −𝑉𝑑𝑑 . At this
point, the difference by digital subtractor will return through 𝑒𝑗 to the
corresponding synapse weight and 𝑉𝑏𝑙2 = 𝑉ℎ𝑖𝑔ℎ to ensure the voltage on
two sides of the memristor exceeds one of its threshold voltage. After a
unit training period 𝑇𝑡𝑟𝑎𝑖𝑛, the memristor’s state variable 𝑠 will change
bit based on equation [8,15],

𝛥𝑠 = ∫

𝑇𝑡𝑟𝑎𝑖𝑛

0
𝑘𝑜𝑛∕𝑜𝑓𝑓

( ±𝑉ℎ𝑖𝑔ℎ
𝑉𝑜𝑛∕𝑜𝑓𝑓

− 1
)𝛼𝑜𝑛∕𝑜𝑓𝑓

⋅ 𝑓𝑤𝑖𝑛 𝑑𝑥 (4)

𝑓𝑤𝑖𝑛 = 𝑠 ⋅ (𝑠 − 1) (5)

where 𝑓𝑤𝑖𝑛 is the window function for limiting state variable. And
hence for memristor resistance, it will vary by [8],

𝛥𝑅 = (𝑅 − 𝑅 )𝛥𝑠 (6)
𝑜𝑓𝑓 𝑜𝑛



H. You, A. Amirsoleimani, J. Xu et al. Memories - Materials, Devices, Circuits and Systems 4 (2023) 100038

O
n

Fig. 4. (a) Flow chart of ADC under training mode. (b) The training process of 𝐼𝑤𝑗 .

The circuit will then return to state 1 to have writing proof. The differ-
ence will be evaluated, and if it is not zero, the alternative training will
be repeated until the zero difference is reached. The synapse weights
training on 1st stage is similar to the 2nd stage weights except the state
2 is executed in every training cycle, the training sets should include
𝑇3−0, and the 2nd stage should remain in working mode to provide
stable 𝐼𝑖𝑛2. Edge detection is disabled during all training processes. The
training results of each weight are shown in Fig. 4(b).

4. Evaluation

The proposed 4 bit ADC is simulated in SPICE software (LTspice),
using 180 nm MOSFET technology (PTM BSIM3 modal) [17], and
VTEAM model [15] for memristor [16]. After AD conversion, the digital
output is sampled again using a 5GSPS digital sampler for a large
oversampling ratio (OSR) and filtered by a digital filter. The digital
sampler and filter and FSM are considered as share components and
not included in the evaluation.

4.1. Power evaluation

The power consumption of the proposed ADC is analyzed and
mainly comes from these sources:

(1) Amplifiers in stage converters that cost 216 μW each, with total
dissipate 432 μW. The three feedback resistors dissipate 1 μW in
total on average.

(2) Amplifiers in neurons that cost 19.2 μW each, with total dissipate
76.8 μW. The feedback resistor 𝑅𝑛 dissipates power in 10th of
nW and is thus negligible.

(3) Synapse weights, where 𝑊12 dissipate 1.11 μW, 𝑊8 dissipate
0.8 μW, 𝑊4 dissipate 0.4 μW, 𝑊3 dissipate 0.13 μW, 𝑊2 dissipate
0.1 μW, and 𝑊1 dissipate 0.05 μW.

ther parts of circuits’ (logic, FSM, multiplexers) power dissipation is
egligible, where mostly they are around or below nW.

4.2. Area evaluation

The scaling of the neural network ADC is improved by the pro-
posed ADC through subranging architecture and component sharing. As
shown in Fig. 5, as the resolution (N) increases, the required number of
synapse weights now equals to 3 ∗ 𝑁∕2 rather than quadratic propor-
tional to resolution 𝑁(𝑁 + 1)∕2 [8]. And the number of computation
neurons for bit calculation is fixed (by sharing neurons among different
stages) regardless of resolutions rather than equal to resolutions [8].
Except that an extra edge detection neuron is needed when one more
synapse weights stage is added.
5

Fig. 5. (a) Area consumption by 4 bit and 8 bit version of proposed ADC (red part are
the additional needed area for 8 bit proposed ADC) (b) Comparison of area consumption
between this work and [8]. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 6. (a) Frequency response of the digital output under 4 MHz sin wave input
(b) Frequency response of ENOB (c) DNL and INL of ADC. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

4.3. Accuracy & speed evaluation

Fig. 6(a) shows the output spectrum of ADC under cutoff frequency
(128 MHz) when a 4 MHz sine wave is input. After oversampling by
5GSPS digital sampler and filtering by a digital filter, a 35.41 dB signal-
to-noise ratio (SNR) is acquired. Fig. 6(b) shows the frequency response
of ENOB, which is calculated through SNR at different frequencies. The
ENOB is first improved when frequency increases due to the gradually
spread out of the noise floor and decrease near the ADC bandwidth due
to the phase lagging of the stage converter’s amplifiers.

4.4. Calibration evaluation

A proposed ADC of initial weights, with heavy transistor and resistor
mismatch (10% under normal distribution), is simulated. The resulting
SNR distribution is shown in Fig. 6(c) in blue color. The orange color
and yellow color distribution are fellow simulation results representing
the circuit with auto-zero and auto-zero with weight calibration. Since
both mean and standard deviation is improved, the proposed ADC is
demonstrated to have an effective calibrating mechanism. Fig. 6(d)
shows the DNL and INL of ADC after training. The Variation in the
memristor device’s parameter generally will not influence the accuracy
of the proposed ADC. As long as desired memristor’s resistance is in
the range of 𝑅𝑜𝑛∕𝑜𝑓𝑓 , the alternative training will ultimately push the
memristor’s state to a state with desired resistance by the feedback.
However, the variation of the 𝑘𝑜𝑛∕𝑜𝑓𝑓 and 𝛼𝑜𝑛∕𝑜𝑓𝑓 will influence the unit
training step by Eqs. (4)(5)(6), and hence influence the training speed.

4.5. Comparison with existing works

Table 2 shows the comparison between different neural networks
or non-uniform sampling ADC with the proposed ADC. The proposed
ADC is highlighted in the area and power efficiency. Among Table 2,
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Table 2
Comparison with neural network and NUS ADC.

This workc [18] [19] [8] [10] [20]

Memory technology RRAM RRAM RRAM RRAM N/A N/A
CMOS Node (nm) 180 130 130 180 65 65
Area (mm2) 3.96/5.56e−3 0.02 0.01 4.85e−3 0.7 0.13
𝑓𝑠 (Hz) NUS 1G 1G 1.66G NUS NUS
Power (mW) 0.515/0.977 25 18 0.1 28 19.7
Bandwidth (Hz) 128M/83Md 1G 0.5G 1.668G 20M 200M
Resolution (bits) 4/6e 8 6 4 18 4
ENOB (bits)a 5.6/9.24 8 5.95 3.7 10.8 10.4
𝐹𝑜𝑀𝑤(fJ∕conv)b 82.95/19.5 97.7 291 8.25 476.2 71.6
Trainable? Yes Yes Yes Yes No No

aENOB = (SNDR−1.76)/6.02.
𝐹𝑜𝑀𝑤 = Power/(2𝐸𝑁𝑂𝐵*BW) for NUS ADC. 𝐹𝑜𝑀𝑤 = Power/(2𝐸𝑁𝑂𝐵 ∗ 𝑓𝑠) for Nyquist

ADC.
cThis work, [18], [19], and [8] are simulation results, while [10] and [20] are
measurement results.
dBW is approximated as 2𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛+1* Maximum input frequency.
e6 bits version of the proposed ADC is estimated based on the 4 bits version by the
mathematical model.

except [8], the proposed ADC generally consumes less power and area
per bit.

(1) Compared with [18,19], Nyquist neural network ADC with sub-
ranging architecture, the proposed ADC utilized non-uniform sampling
by level crossing method. Combined with the oversampling technique,
the proposed ADC is able to acquire a higher effective number of
bits under the same resolution. [18] is a pipeline ADC and its output
has 8 sampling periods latency to the input. The proposed ADC on
the other hand always has real-time output. To increase power and
area efficiency, the proposed ADC does sacrifice part of the speed. But
overall on the FoM, the proposed design has better metrics.

(2) Compared with [8], except by applying nonuniform sampling,
the proposed ADC solves the problem of area boosting when bits
increase by subranging architecture and weight sharing as described
in Section 4. Evaluation, part B Area evaluation. The FoM of [8] is
considered out of scope as described in [18] that [8]’s FoM is evaluated
under a low input frequency (44 kHz).

(3) Compared with [10,20], traditional non-uniform sampling ADC,
the proposed ADC utilized trainable memristor weight as a solution for
the mismatch during fabrication. An alternative training mechanism is
utilized for calibrating the weight to adapt the mismatch and hence
increase the accuracy. [20]’s ENOB is considered out of scope due to
its delta–sigma noise shaping after quantization.

5. Generalization

After the demonstration of the proposed ADC’s feasibility, the pro-
posed ADC can be used as a unit building block to extend and generalize
for a higher resolution ADC. Fig. 7 shows the general structure of the
extended version of the proposed ADC based on Fig. 2(a). For each extra
2 bits, the proposed ADC structure will be extended one more stage,
with the corresponding increase in components described in Table 3.
Every two resolutions increase requires another three weights for de-
termining bits, an extra stage converter for converting the residual to
the next stage, and an extra edge detection neuron for edge detection
of this stage’s two bits. Due to the linear increase of electrical compo-
nents, power consumption (which is dominated by the stage converter’s
TIA and neuron’s TIA) and area increase linearly with respect to the
resolutions.

To maintain the level-crossing non-uniform sampling and real-time
output, the FSM of the extended ADC is also modified accordingly.
Fig. 7(b) shows the modified FSM for the ADC in Fig. 7(a). The ADC
is reset from state 1 and goes through to state i. After that, the ADC
is maintained in the last state, state i, as long as no edge is detected.
Once an edge is detected in the 𝑘th stage, the ADC will return to the

corresponding state and go through all states till the last. As described

6

Fig. 7. (a) The general architecture of proposed ADC with i stages for 2i bits. It is
a simplified but extended graph of Fig. 2(a). (b) The FSM for 2i bits version of the
proposed ADC extended from Fig. 2(e). Each state k corresponds to the operation on
the stage i−k+1.

in Fig. 7(b), the longest set of states that needs to go through is
linearly increased with respect to the resolutions. This will increase
the average bits’ redetermination period when the edge is detected
and thus decrease the bandwidth of ADC for no distortion output. The
linearly increasing regularity of maximum interrupt time is described in
Table 3, 5th column. Based on Table 2, 3 ns corresponds to the settling
time of neurons, where for every first state, its analog result only needs
to pass neurons. For every middle state, the analog result from the
last stage not only needs to pass the stage converter but also neurons,
which cause 3 + 6 (stage converter settling time), 9 ns in total. For the
last state, the FSM only needs to maintain the interrupt until the stage
converter is settled to avoid extra interruption caused by the oscillation,
which is 6 ns. However, if the input signal’s slew rate is predictable,
FSM operation can be simplified by jumping a certain number of states
when the edge is detected and predicting the jumping bits based on a
similar mechanism in Fig. 2(h). A 6 bits version of the proposed ADC
is simulated based on the mathematical model with the corresponding

circuit parameters, and the simulation outputs are listed in Table 2.
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Table 3
Generalization of proposed ADC.
# Bits Area Max interrupt

time (ns)
Power (mW)

#Weight #Stage
converter

#Neuron,
#Feedback

4 6 1 3+1, 2 3+6 0.515

6 9 2 3+2, 4 3+9+6 0.977
2n 3n n−1 3+n−1, 2n 3+9(n−2)+6 ≈ 0.5(n−1)
6. Conclusion

This paper proposed a new subranging nonuniform memristor-based
ANN ADC that achieves another improvement in ADC’s speed, power,
area, and accuracy tradeoff through multiple techniques. The proposed
ADC: (1) Preserve the memristor-based structure and trainable ANN
calibration to reduce inaccuracy bring by the device mismatch and
make the circuit adjustable to adopt environment variation, (2) Intro-
duce memristor and circuit sharing by subranging ADC architecture to
improve the power and area efficiency, (3) Utilize quaternary search
to speed ADC’s bits determination process, (4) And achieve high ADC
ENOB and SNR under same resolutions and area/power consumption
through nonuniform sampling. Through intensive simulations on cir-
cuits, we demonstrate the proposed design is able to have enough
calibration ability among different device mismatches and have stable
performance over a wide range of input frequencies.

The proposed ADC discussed in the paper is only one locally optimal
solution of speed, power, accuracy, and area tradeoff. The design of the
proposed ADC however prioritizes the power, accuracy, and area and
put the speed on the last. Thus, the speed performance has more or less
been sacrificed. With a larger power and area combined with the latest
technology, we believe the proposed architecture can be optimized to
a higher speed and even with a better FoM.
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