80 research outputs found

    Interpreting Sentiment Composition with Latent Semantic Tree

    Full text link
    As the key to sentiment analysis, sentiment composition considers the classification of a constituent via classifications of its contained sub-constituents and rules operated on them. Such compositionality has been widely studied previously in the form of hierarchical trees including untagged and sentiment ones, which are intrinsically suboptimal in our view. To address this, we propose semantic tree, a new tree form capable of interpreting the sentiment composition in a principled way. Semantic tree is a derivation of a context-free grammar (CFG) describing the specific composition rules on difference semantic roles, which is designed carefully following previous linguistic conclusions. However, semantic tree is a latent variable since there is no its annotation in regular datasets. Thus, in our method, it is marginalized out via inside algorithm and learned to optimize the classification performance. Quantitative and qualitative results demonstrate that our method not only achieves better or competitive results compared to baselines in the setting of regular and domain adaptation classification, and also generates plausible tree explanations.Comment: Findings of ACL202

    MicroRec: Efficient Recommendation Inference by Hardware and Data Structure Solutions

    Full text link
    Deep neural networks are widely used in personalized recommendation systems. Unlike regular DNN inference workloads, recommendation inference is memory-bound due to the many random memory accesses needed to lookup the embedding tables. The inference is also heavily constrained in terms of latency because producing a recommendation for a user must be done in about tens of milliseconds. In this paper, we propose MicroRec, a high-performance inference engine for recommendation systems. MicroRec accelerates recommendation inference by (1) redesigning the data structures involved in the embeddings to reduce the number of lookups needed and (2) taking advantage of the availability of High-Bandwidth Memory (HBM) in FPGA accelerators to tackle the latency by enabling parallel lookups. We have implemented the resulting design on an FPGA board including the embedding lookup step as well as the complete inference process. Compared to the optimized CPU baseline (16 vCPU, AVX2-enabled), MicroRec achieves 13.8~14.7x speedup on embedding lookup alone and 2.5$~5.4x speedup for the entire recommendation inference in terms of throughput. As for latency, CPU-based engines needs milliseconds for inferring a recommendation while MicroRec only takes microseconds, a significant advantage in real-time recommendation systems.Comment: Accepted by MLSys'21 (the 4th Conference on Machine Learning and Systems

    7-Pyrrolidinethoxy-4′-Methoxyisoflavone Prevents Amyloid β–Induced Injury by Regulating Histamine H3 Receptor-Mediated cAMP/CREB and AKT/GSK3β Pathways

    Get PDF
    In studies on the treatment of Alzheimer’s disease (AD), in which cognition is enhanced even modestly or selectively, it has been considered that the histamine H3 receptor (H3R) may be a potential target. In this study, we aimed at evaluating the ability of 7-pyrrolidinethoxy-4′-methoxyisoflavone (indicated as LC1405), a novel potential H3R antagonist identified from our H3R antagonist screening system, to ameliorate amyloid β (Aβ)-induced cognitive deficits, and to explore the underlying mechanisms that are related to H3R-modulated signaling. Our results demonstrated that LC1405 effectively reduced the progression of Aβ-associated disorders, such as improved learning and memory capabilities, preserved tissues from suffering neurodegeneration and ultrastructural abnormalities, and ameliorated cholinergic dysfunction in an APP/PS1 double transgenic mouse model of AD. In an in vitro model, LC1405 protected neuronal cells against copper-induced Aβ toxicity, as demonstrated by the improvement in cell viability and decrease in neuronal apoptotic ratio. In addition, treatment with LC1405 resulted in the up-regulation of acetylcholine (ACh) or histamine release and provided neuroprotection through cellular signaling cascades involving H3R-mediated cAMP/CREB and AKT/GSK3β pathways. Furthermore, the beneficial effects of LC1405 on Aβ-mediated toxicity and H3R-mediated cAMP/CREB and AKT/GSK3β axes were reversed after pharmacological activation of H3R. In conclusion, our results demonstrated that LC1405 blocked Aβ-induced toxicity through H3R-modulated signaling transduction both in vitro and in vivo. The results also suggested that LC1405 might have translational potential as a complementary therapy to control disease progression in AD patients who developed cognitive deficits with H3R-related ACh neurotransmission abnormality

    Aspect of Clusters Correlation at Light Nuclei Excited State

    Full text link
    The correlation of αα\alpha\alpha was probed via measuring the transverse momentum pTp_{T} and width δpT\delta p_{T} of one α\alpha, for the first time, which represents the spatial and dynamical essentialities of the initial coupling state in 8^{8}Be nucleus. The weighted interaction vertex of 3α\alpha reflected by the magnitudes of their relative momentums and relative emission angles proves the isosceles triangle configuration for 3α\alpha at the high excited energy analogous Hoyle states.Comment: 8 pages, 9 figure

    Variation of Tensor Force due to Nuclear Medium Effect

    Full text link
    The enhancement of Jπ(T)J^{\pi}(T)=3+^{+}(0) state with isospin T=0T=0 excited by the tensor force in the free 6^{6}Li nucleus has been observed, for the first time, relative to a shrinkable excitation in the 6^{6}Li cluster component inside its host nucleus. Comparatively, the excitation of Jπ(T)J^{\pi}(T)=0+^{+}(1) state with isospin T=1T=1 for these two 6^{6}Li formations take on an approximately equal excitation strength. The mechanism of such tensor force effect was proposed due to the intensive nuclear medium role on isospin TT=0 state.Comment: 6 pages, 4 figure

    Multi-alpha Boson Gas state in Fusion Evaporation Reaction and Three-body Force

    Full text link
    The experimental evidence for the α\alpha Boson gas state in the 11^{11}C+12^{12}C\rightarrow23^{23}Mg^{\ast} fusion evaporation reaction is presented. By measuring the α\alpha emission spectrum with multiplicity 2 and 3, we provide insight into the existence of a three-body force among α\alpha particles. The observed spectrum exhibited distinct tails corresponding to α\alpha particles emitted in pairs and triplets consistent well with the model-calculations of AV18-UX and chiral effective field theory of NV2-3-la*, indicating the formation of α\alpha clusters with three-body force in the Boson gas state.Comment: 7 pages, 6 figure

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    Electric degradation in PZT piezoelectric ceramics under a DC bias

    No full text
    In order to accurately evaluate the service life and failure mechanism of the PZT piezoelectric ceramics, the electric degradation process of the PZT ceramics with and sans doping under a DC voltage of 380V, in a surrounding environment of 90∘C and 85% RH has been investigated using a self-made device. The experimental results show that the degradation rate of the pure PZT ceramic is lower than that of ceramics with doping in the same condition. Furthermore, the electrical properties of the ceramics tend to decrease during the electric degradation. The doping increases the defects of ceramics, resulting in that the silver ion transfer from the anode to the cathode under the continuous DC bias, which can further form a metal band, increasing the conductivity, but deteriorating the service life

    Calculation of the Chilling Requirement for Air Conditioning in the Excavation Roadway

    No full text
    To effectively improve the climate conditions of the excavation roadway in coal mine, the calculation of the chilling requirement taking air conditioning measures is extremely necessary. The temperature field of the surrounding rock with moving boundary in the excavation roadway was numerically simulated by using finite volume method. The unstable heat transfer coefficient between the surrounding rock and air flow was obtained via the previous calculation. According to the coupling effects of the air flow inside and outside air duct, the differential calculation mathematical model of air flow temperature in the excavation roadway was established. The chilling requirement was calculated with the selfdeveloped computer program for forecasting the required cooling capacity of the excavation roadway. A good air conditioning effect had been observed after applying the calculated results to field trial, which indicated that the prediction method and calculation procedure were reliable
    corecore