919 research outputs found

    pH-responsive gas–water–solid interface for multiphase catalysis

    Get PDF
    © 2015 American Chemical Society. Despite their wide utility in laboratory synthesis and industrial fabrication, gas-water-solid multiphase catalysis reactions often suffer from low reaction efficiency because of the low solubility of gases in water. Using a surface-modification protocol, interface-active silica nanoparticles were synthesized. Such nanoparticles can assemble at the gas-water interface, stabilizing micrometer-sized gas bubbles in water, and disassemble by tuning of the aqueous phase pH. The ability to stabilize gas microbubbles can be finely tuned through variation of the surface-modification protocol. As proof of this concept, Pd and Au were deposited on these silica nanoparticles, leading to interface-active catalysts for aqueous hydrogenation and oxidation, respectively. With such catalysts, conventional gas-water-solid multiphase reactions can be transformed to H 2 or O 2 microbubble reaction systems. The resultant microbubble reaction systems exhibit significant catalysis efficiency enhancement effects compared with conventional multiphase reactions. The significant improvement is attributed to the pronounced increase in reaction interface area that allows for the direct contact of gas, water, and solid phases. At the end of reaction, the microbubbles can be removed from the reaction systems through changing the pH, allowing product separation and catalyst recycling. Interestingly, the alcohol oxidation activation energy for the microbubble systems is much lower than that for the conventional multiphase reaction, also indicating that the developed microbubble system may be a valuable platform to design innovative multiphase catalysis reactions

    OVSNet : Towards One-Pass Real-Time Video Object Segmentation

    Full text link
    Video object segmentation aims at accurately segmenting the target object regions across consecutive frames. It is technically challenging for coping with complicated factors (e.g., shape deformations, occlusion and out of the lens). Recent approaches have largely solved them by using backforth re-identification and bi-directional mask propagation. However, their methods are extremely slow and only support offline inference, which in principle cannot be applied in real time. Motivated by this observation, we propose a efficient detection-based paradigm for video object segmentation. We propose an unified One-Pass Video Segmentation framework (OVS-Net) for modeling spatial-temporal representation in a unified pipeline, which seamlessly integrates object detection, object segmentation, and object re-identification. The proposed framework lends itself to one-pass inference that effectively and efficiently performs video object segmentation. Moreover, we propose a maskguided attention module for modeling the multi-scale object boundary and multi-level feature fusion. Experiments on the challenging DAVIS 2017 demonstrate the effectiveness of the proposed framework with comparable performance to the state-of-the-art, and the great efficiency about 11.5 FPS towards pioneering real-time work to our knowledge, more than 5 times faster than other state-of-the-art methods.Comment: 10 pages, 6 figure

    An Active Margin System and its Application in Chinese Margin Lending Market

    Full text link
    In order to protect brokers from customer defaults in a volatile market, an active margin system is proposed for the transactions of margin lending in China. The probability of negative return under the condition that collaterals are liquidated in a falling market is used to measure the risk associated with margin loans, and a recursive algorithm is proposed to calculate this probability under a Markov chain model. The optimal maintenance margin ratio can be given under the constraint of the proposed risk measurement for a specified amount of initial margin. An example of such a margin system is constructed and applied to 26,80026,800 margin loans of 134 stocks traded on the Shanghai Stock Exchange. The empirical results indicate that the proposed method is an operational method for brokers to set margin system with a clearly specified target of risk control.Comment: 27 pages, 2 figures, 5 table

    Design and Research of New Network Address Coding

    Get PDF

    Study of the transfer between libration point orbits and lunar orbits in Earth–Moon system

    Get PDF
    This paper is devoted to the study of the transfer problem from a libration point orbit of the Earth–Moon system to an orbit around the Moon. The transfer procedure analysed has two legs: the first one is an orbit of the unstable manifold of the libration orbit and the second one is a transfer orbit between a certain point on the manifold and the final lunar orbit. There are only two manoeuvres involved in the method and they are applied at the beginning and at the end of the second leg. Although the numerical results given in this paper correspond to transfers between halo orbits around the L1 point (of several amplitudes) and lunar polar orbits with altitudes varying between 100 and 500 km, the procedure we develop can be applied to any kind of lunar orbits, libration orbits around the L1 or L2 points of the Earth–Moon system, or to other similar cases with different values of the mass ratio.Peer ReviewedPostprint (author's final draft

    Investigation of flow field characteristics and performance of carbon-hydrogen/oxygen-rich air rotating detonation engine

    Full text link
    Numerical simulations were conducted to investigate the flow field characteristics and performance of a carbon-hydrogen/oxygen-rich air rotating detonation engine (RDE). Three distinct flow field structures were observed in the gas-solid two-phase RDE. The results show that reducing the hydrogen equivalence ratio and particle diameter both contribute to the transition from gas-phase single-front detonation to gas-solid two-phase double-front detonation and further to gas-solid two-phase single-front detonation. The effects of solid fuel particle diameter and hydrogen equivalence ratio on the flow field characteristics and performance are revealed. The results show that reducing the particle diameter enhances the speed of the two-phase detonation wave, improves the pressure gain in the combustion chamber, and increases the specific impulse. Decreasing the hydrogen equivalence ratio reduces the detonation wave speed, enhances the stability of the detonation flow field, increases the pressure gain in the detonation wave and combustion chamber and boosts thrust. Furthermore, the selection of operational conditions to ensure stable operation and optimal performance of the RDE is discussed. In order to take into account the requirements of stability, pressure gain performance and propulsion performance, two-phase single-front detonation should be realized in gas-solid two-phase RDE, and smaller hydrogen equivalent ratio and appropriate particle diameter should be selected. According to the conclusion of this study, the particle diameter should be 0.5-1 {\mu}m. Under such conditions, the detonation flow field demonstrates good stability, allowing the RDE to achieve higher pressure gain and specific impulse while maintaining stable operation
    • …
    corecore