48 research outputs found

    Corporate Social Responsibility Reporting, Pyramidal Structure And Political Interference: Evidence From China

    Get PDF
    This paper attempts to investigate the relation between pyramidal structure and corporate social responsibility (CSR) reporting quality and the effect of political interference on the relation. Based on 1388 Chinese A-share listed firms during 2010-2012, this paper demonstrates that the separation between control and ownership rights is significantly and positively related to the CSR reporting quality in the state-owned firms (SOFs), while negatively related to the CSR reporting quality in the non-state-owned firms (NSOFs). Results also indicate that the pyramidal layer between the bottom firms and their top ultimate owners is negatively related to CSR reporting quality, particularly significant for the NSOFs. Our research enriches the corporate governance literature by giving insights into the mechanism of pyramidal structure in corporate reporting, and extends the understanding of political interference in the CSR field. This study has public policy implications for China as well as a number of other countries in the Asia–Pacific region.

    Extreme rainfall and snowfall alter responses of soil respiration to nitrogen fertilization : a 3-year field experiment

    Get PDF
    Author Posting. © The Author(s), 2016. This is the author's version of the work. It is posted here by permission of John Wiley & Sons for personal use, not for redistribution. The definitive version was published in Global Change Biology 23 (2017): 3403-3417, doi:10.1111/gcb.13620.Extreme precipitation is predicted to be more frequent and intense accompanying global warming, and may have profound impacts on soil respiration (Rs) and its components, i.e., autotrophic (Ra) and heterotrophic (Rh) respiration. However, how natural extreme rainfall or snowfall events affect these fluxes are still lacking, especially under nitrogen (N) fertilization. In this study, extreme rainfall and snowfall events occurred during a 3-year field experiment, allowing us to examine their effects on the response of Rs, Rh and Ra to N supply. In normal rainfall years of 2011/2012 and 2012/2013, N fertilization significantly stimulated Rs by 23.9% and 10.9%, respectively. This stimulation was mainly due to the increase of Ra because of N-induced increase in plant biomass. In the record wet year of 2013/2014, however, Rs was independent on N supply because of the inhibition effect of the extreme rainfall event. Compared with those in other years, Rh and Ra were reduced by 36.8% and 59.1%, respectively, which were likely related to the anoxic stress on soil microbes and decreased photosynthates supply. Although N supply did not affect annual Rh, the response ratio (RR) of Rh flux to N fertilization decreased firstly during growing season, increased in nongrowing season and peaked during spring thaw in each year. Nongrowing season Rs and Rh contributed 5.5–16.4% to their annual fluxes, and were higher in 2012/2013 than other years due to the extreme snowfall inducing higher soil moisture during spring thaw. The RR of nongrowing season Rs and Rh decreased in years with extreme snowfall or rainfall compared to those in normal years. Overall, our results highlight the significant effects of extreme precipitation on responses of Rs and its components to N fertilization, which should be incorporated into models to improve the prediction of carbon-climate feedbacks.This research was funded by the Chinese Academy of Sciences (XDB15020100) and the National Natural Science Foundation of China (31561143011).2017-12-2

    Case report: Three novel variants on SLC25A13 in four infants with neonatal intrahepatic cholestasis caused by citrin deficiency

    Get PDF
    BackgroundNeonatal intrahepatic cholestasis caused by citrin deficiency (NICCD) is a common clinical phenotype of citrin deficiency in infants. Its phenotype is atypical, so genetic testing is quite necessary for the diagnosis.Case presentationWe report 4 patients with jaundice and low body weight. Furthermore, the biochemical examination of all showed abnormal liver function and metabolic changes. DNA samples of the patients were extracted and subjected to genetic screening. All candidate pathogenic variants were validated by Sanger sequencing, and CNVs were ascertained by qPCR. The genetic screening revealed 6 variants in 4 patients, and all patients carried compound heterozygous variants of SLC25A13. Importantly, 3 variants were newly discovered: a nonsense mutation in exon17 (c.1803C > G), a frameshift mutation in exon 11(c.1141delG) and a deletion of the whole exon11. Thus, four NICCD patients were clearly caused by variants of SLC25A13. Biochemical indicators of all patients gradually returned to normal after dietary adjustment.ConclusionsOur study clarified the genetic etiology of the four infants, expanded the variant spectrum of SLC25A13, and provided a basis for genetic counseling of the family. Early diagnosis and intervention should be given to patients with NICCD

    mTORC1 signalling and eIF4E/4E-BP1 translation initiation factor stoichiometry influence recombinant protein productivity from GS-CHOK1 cells

    Get PDF
    Many protein-based biotherapeutics are produced in cultured Chinese hamster ovary (CHO) cell lines. Recent reports have demonstrated that translation of recombinant mRNAs and global control of the translation machinery via mammalian target of rapamycin (mTOR) signalling are important determinants of the amount and quality of recombinant protein such cells can produce. mTOR complex 1 (mTORC1) is a master regulator of cell growth/division, ribosome biogenesis and protein synthesis, but the relationship between mTORC1 signalling, cell growth and proliferation and recombinant protein yields from mammalian cells, and whether this master regulating signalling pathway can be manipulated to enhance cell biomass and recombinant protein production (rPP) are not well explored. We have investigated mTORC1 signalling and activity throughout batch culture of a panel of sister recombinant glutamine synthetase-CHO cell lines expressing different amounts of a model monoclonal IgG4, to evaluate the links between mTORC1 signalling and cell proliferation, autophagy, recombinant protein expression, global protein synthesis and mRNA translation initiation. We find that the expression of the mTORC1 substrate 4E-binding protein 1 (4E-BP1) fluctuates throughout the course of cell culture and, as expected, that the 4E-BP1 phosphorylation profiles change across the culture. Importantly, we find that the eIF4E/4E-BP1 stoichiometry positively correlates with cell productivity. Furthermore, eIF4E amounts appear to be co-regulated with 4E-BP1 amounts. This may reflect a sensing of either change at the mRNA level as opposed to the protein level or the fact that the phosphorylation status, as well as the amount of 4E-BP1 present, is important in the co-regulation of eIF4E and 4E-BP1

    Insight-HXMT observations of Swift J0243.6+6124 during its 2017-2018 outburst

    Full text link
    The recently discovered neutron star transient Swift J0243.6+6124 has been monitored by {\it the Hard X-ray Modulation Telescope} ({\it Insight-\rm HXMT). Based on the obtained data, we investigate the broadband spectrum of the source throughout the outburst. We estimate the broadband flux of the source and search for possible cyclotron line in the broadband spectrum. No evidence of line-like features is, however, found up to 150 keV\rm 150~keV. In the absence of any cyclotron line in its energy spectrum, we estimate the magnetic field of the source based on the observed spin evolution of the neutron star by applying two accretion torque models. In both cases, we get consistent results with B∼1013 GB\rm \sim 10^{13}~G, D∼6 kpcD\rm \sim 6~kpc and peak luminosity of >1039 erg s−1\rm >10^{39}~erg~s^{-1} which makes the source the first Galactic ultraluminous X-ray source hosting a neutron star.Comment: publishe

    Overview to the Hard X-ray Modulation Telescope (Insight-HXMT) Satellite

    Full text link
    As China's first X-ray astronomical satellite, the Hard X-ray Modulation Telescope (HXMT), which was dubbed as Insight-HXMT after the launch on June 15, 2017, is a wide-band (1-250 keV) slat-collimator-based X-ray astronomy satellite with the capability of all-sky monitoring in 0.2-3 MeV. It was designed to perform pointing, scanning and gamma-ray burst (GRB) observations and, based on the Direct Demodulation Method (DDM), the image of the scanned sky region can be reconstructed. Here we give an overview of the mission and its progresses, including payload, core sciences, ground calibration/facility, ground segment, data archive, software, in-orbit performance, calibration, background model, observations and some preliminary results.Comment: 29 pages, 40 figures, 6 tables, to appear in Sci. China-Phys. Mech. Astron. arXiv admin note: text overlap with arXiv:1910.0443

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Dithionite promoted microbial dechlorination of hexachlorobenzene while goethite further accelerated abiotic degradation by sulfidation in paddy soil

    No full text
    It is of great scientific and practical importance to explore the mechanisms of accelerated degradation of Hexachlorobenzene (HCB) in soil. Both iron oxide and dithionite may promote the reductive dechlorination of HCB, but their effects on the microbial community and the biotic and abiotic mechanisms behind it remain unclear. This study investigated the effects of goethite, dithionite, and their interaction on microbial community composition and structure, and their potential contribution to HCB dechlorination in a paddy soil to reveal the underlying mechanism. The results showed that goethite addition alone did not significantly affect HCB dechlorination because the studied soil lacked iron-reducing bacteria. In contrast, dithionite addition significantly decreased the HCB contents by 44.0–54.9%, while the coexistence of dithionite and goethite further decreased the HCB content by 57.9–69.3%. Random Forest analysis suggested that indicator taxa (Paenibacillus, Acidothermus, Haliagium, G12-WMSP1, and Frankia), Pseudomonas, richness and Shannon’s index of microbial community, and immobilized Fe content were dominant driving factors for HCB dechlorination. The dithionite addition, either with or without goethite, accelerated HCB anaerobic dechlorination by increasing microbial diversity and richness as well as the relative abundance of the above specific bacterial genera. When goethite and dithionite coexist, sulfidation of goethite with dithionite could remarkably increase FeS formation and then further promote HCB dechlorination rates. Overall, our results suggested that the combined application of goethite and dithionite could be a practicable strategy for the remediation of HCB contaminated soil
    corecore