7 research outputs found

    Identification of hub genes and construction of prognostic nomogram for patients with Wilms tumors

    Get PDF
    BackgroundIn children, Wilms’ tumors are the most common urological cancer with unsatisfactory prognosis, but few molecular prognostic markers have been discovered for it. With the rapid development of high-throughput quantitative proteomic and transcriptomic approaches, the molecular mechanisms of various cancers have been comprehensively explored. This study aimed to uncover the molecular mechanisms underlying Wilms tumor and build predictive models by use of microarray and RNA-seq data.MethodsGene expression datasets were downloaded from Therapeutically Applicable Research to Generate Effective Treatments (TARGET) and Gene Expression Omnibus (GEO) databases. Bioinformatics methods wereutilized to identified hub genes, and these hub genes were validated by experiment. Nomogram predicting OS was developed using genetic risk score model and clinicopathological variables.ResultsCDC20, BUB1 and CCNB2 were highly expressed in tumor tissues and able to affect cell proliferation and the cell cycle of SK-NEP-1 cells. This may reveal molecular biology features and a new therapeutic target of Wilms tumour.7 genes were selected as prognostic genes after univariate, Lasso, and multivariate Cox regression analyses and had good accuracy, a prognostic nomogram combined gene model with clinical factors was completed with high accuracy.ConclusionsThe current study discovered CDC20,BUB1 and CCNB2 as hub-genes associated with Wilms tumor, providing references to understand the pathogenesis and be considered a novel candidate to target therapy and construct novel nomogram, incorporating both clinical risk factors and gene model, could be appropriately applied in preoperative individualized prediction of malignancy in patients with Wilms tumor

    A novel capsule by poly (ethylene glycol) granulation for self-healing concrete

    No full text
    Minerals can be incorporated in concrete to promote self-healing. Encapsulation of minerals is needed for avoiding undesired reactions before concrete cracks. Therefore, this study designed a novel capsule. The core materials of the capsules were either cement or a combination of cement and superabsorbent polymers (SAPs), which were granulated by poly (ethylene glycol) followed by a waterproof layer (i.e., epoxy resin and sand). The structure and hydration process of capsules, self-healing efficiency of cracked mortars and healing product were characterized. Results showed that core materials in capsules could react with water with dissolution of PEG and swelling of SAP swelled in cracks. Moreover, specimens incorporated capsules showed high sealing ratio for cracks below 400 μm and even inside cracks wider than 200 μm could be bridged due to capsules with SAP. Recovery of water tightness, flexural and compressive strength were obtained. The healing products were C-S-H and CaCO₃.The authors would like to acknowledge financial support from Natural Science Foundation of Jiangsu Province, China (BK20191270)

    A Perifacial EMG Acquisition System for Facial-Muscle-Movement Recognition

    No full text
    This paper proposes a portable wireless transmission system for the multi-channel acquisition of surface electromyography (EMG) signals. Because EMG signals have great application value in psychotherapy and human-computer interaction, this system is designed to acquire reliable, real-time facial-muscle-movement signals. Electrodes placed on the surface of a facial-muscle source can inhibit facial-muscle movement due to weight, size, etc., and we propose to solve this problem by placing the electrodes at the periphery of the face to acquire the signals. The multi-channel approach allows this system to detect muscle activity in 16 regions simultaneously. Wireless transmission (Wi-Fi) technology is employed to increase the flexibility of portable applications. The sampling rate is 1 KHz and the resolution is 24 bit. To verify the reliability and practicality of this system, we carried out a comparison with a commercial device and achieved a correlation coefficient of more than 70% on the comparison metrics. Next, to test the system's utility, we placed 16 electrodes around the face for the recognition of five facial movements. Three classifiers, random forest, support vector machine (SVM) and backpropagation neural network (BPNN), were used for the recognition of the five facial movements, in which random forest proved to be practical by achieving a classification accuracy of 91.79%. It is also demonstrated that electrodes placed around the face can still achieve good recognition of facial movements, making the landing of wearable EMG signal-acquisition devices more feasible

    Temperature-Controlled Expression of a Recombinant Human-like Collagen I Peptide in <i>Escherichia coli</i>

    No full text
    Collagen is the functional protein of the skin, tendons, ligaments, cartilage, bone, and connective tissue. Due to its extraordinary properties, collagen has a wide range of applications in biomedicine, tissue engineering, food, and cosmetics. In this study, we designed a functional fragment of human type I collagen (rhLCOL-I) and expressed it in Escherichia coli (E. coli) BL21(DE3) PlysS containing a thermal-induced plasmid, pBV-rhLCOL-I. The results indicated that the optimal expression level of the rhLCOL-I reached 36.3% of the total protein at 42 °C, and expressed in soluble form. In a 7 L fermentation, the yield of purified rhLCOL-I was 1.88 g/L. Interestingly, the plasmid, pBV220-rhLCOL-I, was excellently stable during the fermentation process, even in the absence of antibiotics. Functional analyses indicated that rhLCOL-I had the capacity to promote skin cell migration and adhesion in vitro and in vivo. Taken together, we developed a high-level and low-cost approach to produce collagen fragments suitable for medical applications in E. coli.</i

    Deploying Indocyanine Green Fluorescence-Guided Navigation System in Precise Laparoscopic Resection of Pediatric Hepatoblastoma

    No full text
    Background: Hepatoblastoma (HB) is the most common form of liver cancer in children. To date, complete tumor resection is still the gold standard for treating HB. Indocyanine green (ICG) has been identified as a sensitive adjunct that is highly effective in the identification and surgical management of local and metastatic HB. It has thus becomes an increasingly popular choice among surgeons in HB resection surgeries that are fluorescence-guided. However, laparotomy remains the preferred choice in most cases since the applications and limitations of fluorescence-guided laparoscopic surgery in treating HB remain unclear. In this study, the characteristics and outcomes of laparoscopic HB resections that were guided by intraoperative ICG fluorescent imaging were investigated. Methods: Seven HB patients underwent ICG-guided laparoscopic HB resection surgery from August 2019 to December 2021. ICG was intravenously administered to the patients at a dosage of 0.5 mg/kg 48 h prior to the scheduled operation. During operation, tumor localization and resection boundary were guided by fluorescence visualization. The data on surgical and clinical features were collected retrospectively. Results: The resection area and tumor boundary could be clearly viewed in real-time under the ICG fluorescence imaging navigation system during operation, except for one patient who had received interventional chemoembolization before surgery. The image produced by laparoscopic fluorescence navigation was clear since it was not affected by ambient light. All tumors were completely resected as confirmed by negative margins for HB during postoperative pathological examination. No residual or recurrence were also found through computed tomography during follow-up visits from 9 to 37 months. Conclusions: ICG fluorescence-guided laparoscopic surgery is safe and effective in treating HB due to its ability to provide clear information on tumor localization and delineate tumor margins in real-time

    PR55α, a Regulatory Subunit of PP2A, Specifically Regulates PP2A-mediated β-Catenin Dephosphorylation

    No full text
    A central question in Wnt signaling is the regulation of β-catenin phosphorylation and degradation. Multiple kinases, including CKIα and GSK3, are involved in β-catenin phosphorylation. Protein phosphatases such as PP2A and PP1 have been implicated in the regulation of β-catenin. However, which phosphatase dephosphorylates β-catenin in vivo and how the specificity of β-catenin dephosphorylation is regulated are not clear. In this study, we show that PP2A regulates β-catenin phosphorylation and degradation in vivo. We demonstrate that PP2A is required for Wnt/β-catenin signaling in Drosophila. Moreover, we have identified PR55α as the regulatory subunit of PP2A that controls β-catenin phosphorylation and degradation. PR55α, but not the catalytic subunit, PP2Ac, directly interacts with β-catenin. RNA interference knockdown of PR55α elevates β-catenin phosphorylation and decreases Wnt signaling, whereas overexpressing PR55α enhances Wnt signaling. Taken together, our results suggest that PR55α specifically regulates PP2A-mediated β-catenin dephosphorylation and plays an essential role in Wnt signaling
    corecore