63 research outputs found

    Experimental observation of wave localization at the Dirac frequency in a two-dimensional photonic crystal microcavity

    Get PDF
    Trapping light within cavities or waveguides in photonic crystals is an effective technology in modern integrated optics. Traditionally, cavities rely on total internal reflection or a photonic bandgap to achieve field confinement. Recent investigations have examined new localized modes that occur at a Dirac frequency that is beyond any complete photonic bandgap. We design Al2O3 dielectric cylinders placed on a triangular lattice in air, and change the central rod size to form a photonic crystal microcavity. It is predicted that waves can be localized at the Dirac frequency in this device without photonic bandgaps or total internal reflections. We perform a theoretical analysis of this new wave localization and verify it experimentally. This work paves the way for exploring localized defect modes at the Dirac point in the visible and infrared bands, with potential applicability to new optical devices

    The transition from incoherent to coherent random laser in defect waveguide based on organic/inorganic hybrid laser dye

    Get PDF
    This paper systematically demonstrated a variety of experimental phenomena of random lasers (RLs) of N,N′-di-(3-(isobutyl polyhedral oligomeric silsesquioxanes)propyl) perylene diimide (DPP) organic/inorganic hybrid laser dye, which is composed of perylene diimide (PDI) as gain media and polyhedral oligomeric silsesquioxanes (POSS) as scattering media at a mole ratio of 1:2. In this work, we observe the transition from incoherent RL in the DPP-doped solutions and polymer membrane systems using dip-coating method to coherent RL in the polymer membrane system with defect waveguide using semi-polymerization (SP) coating method. Meanwhile, we found that the hybrid dye-DPP has a long lasing lifetime compared with the traditional laser dyes, which indicates that the POSS group can suppress the photo-bleaching effect to extend the working life of laser dyes

    An inventory of invasive alien species in China

    Get PDF
    Invasive alien species (IAS) are a major global challenge requiring urgent action, and the Strategic Plan for Biodiversity (2011–2020) of the Convention on Biological Diversity (CBD) includes a target on the issue. Meeting the target requires an understanding of invasion patterns. However, national or regional analyses of invasions are limited to developed countries. We identified 488 IAS in China’s terrestrial habitats, inland waters and marine ecosystems based on available literature and field work, including 171 animals, 265 plants, 26 fungi, 3 protists, 11 procaryots, and 12 viruses. Terrestrial plants account for 51.6% of the total number of IAS, and terrestrial invertebrates (104 species) for 21.3%. Of the total numbers, 67.9% of plant IAS and 34.8% of animal IAS were introduced intentionally. All other taxa were introduced unintentionally despite very few animal and plant species that invaded naturally. In terms of habitats, 64.3% of IAS occur on farmlands, 13.9% in forests, 8.4% in marine ecosystems, 7.3% in inland waters, and 6.1% in residential areas. Half of all IAS (51.1%) originate from North and South America, 18.3% from Europe, 17.3% from Asia not including China, 7.2% from Africa, 1.8% from Oceania, and the origin of the remaining 4.3% IAS is unknown. The distribution of IAS can be divided into three zones. Most IAS are distributed in coastal provinces and the Yunnan province; provinces in Middle China have fewer IAS, and most provinces in West China have the least number of IAS. Sites where IAS were first detected are mainly distributed in the coastal region, the Yunnan Province and the Xinjiang Uyghur Autonomous Region. The number of newly emerged IAS has been increasing since 1850. The cumulative number of firstly detected IAS grew exponentially

    Electro- and photon-induced cooling in BNT-BT-SBET relaxors with in situ optical temperature sensing

    Get PDF
    A novel lead-free luminescent ferroelectric (FE) ceramic, Bi0.5Na0.5TiO3-0.06BaTiO3-0.055Sr0.7Bi0.18Er0.02□0.1TiO3, is developed with an adiabatic temperature change (ΔT) of 0.7 K under an electric-field (E) of 60 kV/cm at room temperature (RT), an anti-stokes fluorescence (FL) cooling and a maximum optical T sensitivity of 0.0055 K-1 at 522 K. Interestingly, the electrocaloric (EC) response reaches a saturation at permittivity-shoulder T of 100 oC, meanwhile the maximized emission intensity of 2H11/2→4I15/2 occurs. T- and E-tunable enhancement of 2H11/2→4I15/2 emission intensity is due to the population inversion from the 4S3/2 to 2H11/2 states caused by an incoherent regime consisting of FE phase and polar nanoregions (PNRs) in a relaxor (R) matrix

    Irisin Is Controlled by Farnesoid X Receptor and Regulates Cholesterol Homeostasis

    Get PDF
    ObjectiveThe aim of this study was to investigate whether the nuclear receptor farnesoid X receptor (FXR) could regulate FNDC5/Irisin expression and the role of Irisin in hyperlipidemia and atherosclerosis in ApoE-/- mice.Methods and ResultsWe treated primary human hepatocytes, HepG2 cells, and Rhesus macaques with FXR agonist (CDCA, GW4064, and ivermectin). FNDC5 expression was highly induced by CDCA and GW4064 in hepatocytes, HepG2 cells, and the circulating level of Irisin increased in Rhesus macaques. Luciferase reporter and CHIP assays were used to determine whether FXR could regulate FNDC5 promoter activity. Irisin-ApoE-/- and ApoE-/- mice were used to study the metabolic function of Irisin in dyslipidemia and atherosclerosis. Irisin-ApoE-/- mice showed improved hyperlipidemia and alleviated atherosclerosis as compared with ApoE-/- mice. Irisin upregulated the expression of Abcg5/Abcg8 in liver and intestine, which increased the transport of biliary cholesterol and fecal cholesterol output.ConclusionActivation of FXR induces FNDC5 mRNA expression in human and increased the circulating level of Irisin in Rhesus macaques. FNDC5/Irisin is a direct transcriptional target of FXR. Irisin may be a novel therapeutic strategy for dyslipidemia and atherosclerosis

    Recurrence in oral and pharyngeal cancer is associated with quantitative MGMT promoter methylation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Biomarkers that predict clinical response, tumor recurrence or patient survival are severely lacking for most cancers, particularly for oral and pharyngeal cancer. This study examines whether gene-promoter methylation of tumor DNA correlates with survival and recurrence rates in a population of patients with oral or pharyngeal cancer.</p> <p>Methods</p> <p>The promoter methylation status of the DNA repair gene <it>MGMT </it>and the tumor suppressor genes <it>CDKN2A and RASSF1 </it>were evaluated by methylation-specific PCR in 88 primary oral and pharyngeal tumors and correlated with survival and tumor recurrence. Quantitative <it>MGMT </it>methylation was also assessed.</p> <p>Results</p> <p>29.6% of the tumors presented with <it>MGMT </it>methylation, 11.5% with <it>CDKN2A </it>methylation and 12.1% with <it>RASSF1 </it>methylation. <it>MGMT </it>promoter methylation was significantly associated with poorer overall and disease-free survival. No differences in methylation status of <it>MGMT </it>and <it>RASSF1 </it>with HPV infection, smoking or drinking habits were observed. A significant inverse trend with the amount of <it>MGMT </it>methylation and overall and disease-free survival was observed (p<sub>trend </sub>= 0.002 and 0.001 respectively).</p> <p>Conclusion</p> <p>These results implicate <it>MGMT </it>promoter methylation as a possible biomarker for oral and pharyngeal cancer prognosis. The critical role of MGMT in DNA repair suggests that defective DNA repair may be correlative in the observed association between <it>MGMT </it>promoter methylation and tumor recurrence. Follow-up studies should include further quantitative MSP-PCR measurement, global methylation profiling and detailed analysis of downstream DNA repair genes regulated by promoter methylation.</p

    The Impact of Heavy Rainfall Variability on Fertilizer Application Rates: Evidence from Maize Farmers in China

    No full text
    Global warming increases the intensity and frequency of extreme weather events, which is harmful to agricultural production. Given that the overuse of fertilizer has been found to be a significant contributor to global warming, it is crucial to analyze the factors affecting farmers&rsquo; fertilizer use and find appropriate fertilizer reduction measures. Agriculture is inherently risky, but previous studies have ignored the risk factors related to heavy rainfall variability, including fertilizer losses and the possible yield risks, which may lead to income risk. Using the 1995&ndash;2018 National Rural Fixed Observation Point Survey Data, this study examines the impact of heavy rainfall variability on maize farmers&rsquo; fertilizer application rates, aiming to understand farmers&rsquo; fertilization behavior in response to weather shocks. The results show that heavy rainfall variability significantly increases farmers&rsquo; fertilizer application rates on maize. Furthermore, we find that heavy rainfall variability has greater effects on fertilizer use in hills and mountainous areas and areas with good irrigation conditions or high economic levels. When examining the potential channels underlying the estimated effects, we find that yield fluctuations are a channel through which heavy rainfall variability affects farmers&rsquo; fertilizer use on maize. The above results indicate that farmers view applying extra fertilizer as a risk reducing activity in response to rainfall shocks, which helps to prevent low yield and income. Strengthening agricultural infrastructure construction according to local conditions and promoting fertilizer reduction technologies and products to reduce yield risk caused by heavy rainfall can help alleviate the problem of high fertilizer application rates by Chinese farmers

    Heterologous expression, purification and biochemical characterization of a glutamate racemase (MurI) from Streptococcus mutans UA159

    No full text
    Background Glutamate racemase (MurI) is a cofactor-independent enzyme that is essential to the bacterial peptidoglycan biosynthesis pathway and has therefore been considered an attractive target for the development of antimicrobial drugs. While in our previous study the essentiality of the murI gene was shown in Streptococcus mutans, the primary aetiologic agent of human dental caries, studies on S. mutans MurI have not yet provided definitive results. This study aimed to produce and characterize the biochemical properties of the MurI from the S. mutans UA159 genome. Methods Structure characterization prediction and multiple sequence alignment were performed by bioinformatic analysis. Recombinant His6-tagged S. mutans MurI was overexpressed in the expression vector pColdII and further purified using a Ni2+ affinity chromatography method. Protein solubility, purity and aggregation state were analyzed by SDS–PAGE, Western blotting, native PAGE and SEC-HPLC. Kinetic parameters were assessed by a circular dichroism (CD) assay. Kinetic constants were calculated based on the curve fit for the Michaelis–Menten equation. The effects of temperature and pH on enzymatic activity were determined by a series of coupled enzyme reaction mixtures. Results The glutamate racemase gene from S. mutans UA159 was amplified by PCR, cloned and expressed in Escherichia coli BL21 (DE3). The 264-amino-acid protein, as a mixture of dimeric and monomeric enzymes, was purified to electrophoretic homogeneity. In the CD assay, S. mutans MurI displayed unique kinetic parameters (Km, d-Glu→l-Glu = 0.3631 ± 0.3205 mM, Vmax, d-Glu→l-Glu = 0.1963 ± 0.0361 mM min−1, kcat, d-Glu→l-Glu = 0.0306 ± 0.0065 s−1, kcat/Km, d-Glu→l-Glu = 0.0844 ± 0.0128 s−1 mM−1, with d-glutamate as substrate; Km, l-Glu→d-Glu = 0.8077 ± 0.5081 mM, Vmax, l-Glu→d-Glu = 0.2421 ± 0.0418 mM min−1, kcat, l-Glu→d-Glu = 0.0378 ± 0.0056 s−1, kcat/Km, l-Glu→d-Glu = 0.0468 ± 0.0176 s−1 mM−1, with l-glutamate as substrate). S. mutans MurI possessed an assay temperature optimum of 37.5 °C and its optimum pH was 8.0. Conclusion The findings of this study provide insight into the structure and biochemical traits of the glutamate racemase in S. mutans and supply a conceivable guideline for employing glutamate racemase in anti-caries drug design

    Y-shaped beam splitters for self-collimated beams in 2D photonic crystals

    No full text
    In this paper, a new Y-shaped beam splitter is designed by combining the partial band gap with self-collimation in a two-dimensional photonic crystal, and the design has been validated by finite-difference time-domain simulation. Simultaneously, we improve the design and enhance the power transmission ratio by inserting an air trench into the incident waveguide. The transmission rises from 24% to 44% at the normalized frequency of 0.185 in each branch, and the maximum transmission ratio within the frequency range of self-collimation reaches 47% at the normalized frequency of 0.187
    • …
    corecore