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Objective: The aim of this study was to investigate whether the nuclear receptor
farnesoid X receptor (FXR) could regulate FNDC5/Irisin expression and the role of Irisin
in hyperlipidemia and atherosclerosis in ApoE−/− mice.

Methods and Results: We treated primary human hepatocytes, HepG2 cells, and
Rhesus macaques with FXR agonist (CDCA, GW4064, and ivermectin). FNDC5
expression was highly induced by CDCA and GW4064 in hepatocytes, HepG2 cells,
and the circulating level of Irisin increased in Rhesus macaques. Luciferase reporter and
CHIP assays were used to determine whether FXR could regulate FNDC5 promoter
activity. Irisin-ApoE−/− and ApoE−/− mice were used to study the metabolic function
of Irisin in dyslipidemia and atherosclerosis. Irisin-ApoE−/− mice showed improved
hyperlipidemia and alleviated atherosclerosis as compared with ApoE−/− mice. Irisin
upregulated the expression of Abcg5/Abcg8 in liver and intestine, which increased the
transport of biliary cholesterol and fecal cholesterol output.

Conclusion: Activation of FXR induces FNDC5 mRNA expression in human and
increased the circulating level of Irisin in Rhesus macaques. FNDC5/Irisin is a direct
transcriptional target of FXR. Irisin may be a novel therapeutic strategy for dyslipidemia
and atherosclerosis.

Keywords: FNDC5/Irisin, FXR, hyperlipidemia, atherosclerosis, ApoE−/−

INTRODUCTION

Cholesterol plays an important role in cellular membranous structures. Its metabolites, such as
bile acids, oxysterols, certain vitamins, and steroid hormones, are essential for various cellular
functions (Grebe and Latz, 2013). However, accumulation of excess cholesterol can be harmful,
leading to a wide variety of cellular toxicities, and human diseases such as atherosclerosis
(Spady, 1999). Cholesterol can be mobilized and excreted to prevent atherosclerosis (Fitzgerald
et al., 2010). Cholesterol export is mediated by several membrane cholesterol transporters,

Abbreviations: Abcg5/8, ATP-binding cassette transporters5/8; ApoE−/−, ApoE knockout; CAR, constitutive androstane
receptor; CDCA, chenodeoxycholic acid; FNDC5, fibronectin type III domain-containing protein 5; FXR, farnesoid X
receptor; GW, GW3965; Irisin-TG, irisin transgenic mice; LXR, liver X receptor; Rif, rifamycin.
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including ATP-binding cassette (Abc) transporters ABCG1,
and ABCG1. Abca1 plays a crucial role in the efflux of
cellular cholesterol to APOA-I, whereas ABCG1 promotes
cellular cholesterol export to high-density lipoprotein (HDL)
(Ye et al., 2011).

Cholesterol homeostasis is maintained mainly by intestinal
absorption, conversion into bile acids and biliary and fecal
excretion. Intestinal cholesterol absorption is mediated by
Niemann-Pick C1-Like 1 (Npc1l1) (Altmann et al., 2004).
Cholesterol can be converted into bile acids in the liver via the
classical pathway (mainly by Cyp7a1 and Cyp8b1) or alternative
pathways (mainly by Cyp7b1 and Cyp27a1) (Pandak et al.,
2002; Hebanowska, 2011). Cholesterol excretion from the body
is principally mediated by the Abc transporters ABCG5 and
ABCG8 (Berge et al., 2000). In the liver, ABCG5/ABCG8 promote
efficient secretion of cholesterol into bile (Graf et al., 2003; Wang
et al., 2015). In the intestine, ABCG5/ABCG8 contribute to
cholesterol excretion by transporting cholesterol into gut lumen
(Graf et al., 2003; Wang et al., 2015).

Irisin is a novel polypeptide hormone released into
the circulation by proteolytics from fibronectin type III
domain-containing protein 5 (FNDC5) (Bostrom et al., 2012),
which is highly expressed in heart, liver, and skeletal muscle
(Huh et al., 2012). Circulating Irisin is positively correlated
with HDL-cholesterol level and negatively correlated with
total cholesterol level in women with normal weight obesity
(Mehrabian et al., 2015). Benton et al. (2010) showed a significant
association between Irisin and HDL-cholesterol levels in healthy
non-diabetic subjects. Thus, Irisin might have a protective role in
cardiovascular disease.

Farnesoid X receptor (FXR) is a ligand-activated transcription
factor and a nuclear hormone receptor that regulates multiple
biological processes. FXR can be activated by chenodeoxycholic
acid (CDCA), GW4064, and ivermectin (Jin et al., 2013; Xu et al.,
2015). FXR controls the expression of multiple genes that are
key to many aspects of metabolism. Activation of FXR increases
reverse cholesterol transport (Jonker et al., 2012). Consistent with
the role of FXR in reverse cholesterol transport, activation of FXR
protects against the development of atherosclerosis (Xu et al.,
2016). Although the function of FXR in cholesterol metabolism
is widely known, whether FXR may affect cholesterol metabolism
by regulating Irisin is unknown.

In this study, we showed that FNDC5/Irisin is regulated
by FXR. Overexpression of Irisin alleviated atherosclerosis
in ApoE−/− mice. Mechanistic studies revealed that Irisin
enhanced cholesterol efflux from the body by hepatobiliary
secretion via upregulating Abcg5/8 expression. Our results
demonstrate a novel pathway of Irisin regulation and provide a
potential therapeutic target for the treatment of atherosclerosis.

MATERIALS AND METHODS

Cell Culture, Animal, Drug Treatment,
and Diet
All cell lines were cultured under standard conditions at
37◦C, 5% CO2 in a humidified incubator. HepG2 cells (ATCC

HB8065) were maintained in Earle’s modified Eagle’s medium
(EMEM) supplemented with 10% fetal bovine serum (FBS).
HepG2 cells were seeded in a 6-well and treated with CDCA
(100 µM) or GW4064 (2.5 µM) for 24 h and mRNAs were
determined by qPCR.

Primary human hepatocytes were isolated from freshly
excised human liver tissue from donors who underwent elective
operations (e.g., hepatectomy) at the Department of Surgery,
West China hospital, Sichuan University. All the donors gave
their written informed consent for participation in the study. The
study protocol was approved by the Research Ethics Committee
of West China Hospital of Sichuan University (ChiCTR ECS
14004441). All the procedures followed the Declaration of
Helsinki principles.

The Institutional Animal Care and Use Committee of
Sichuan University, Chengdu, China, approved all studies.
The investigation conforms to the Guide for the Care and
Use of Laboratory Animals published by the United States
National Institutes of Health. Rhesus macaques were housed
in climate-controlled conditions with 12-h light/dark cycles.
Monkeys were provided water ad libitum and fed twice a day
with a normal diet (n = 8). For ivermectin treatment, monkeys
received a single subcutaneous injection with ivermectin
(0.4 mg/kg) and blood was collected 24 h later. ApoE−/− mice
were purchased from the Jackson Laboratory (Bar Harbor, ME,
United States) and were maintained on a C57BL/6J background.
Irisin transgenic (Irisin-Tg) mice on a C57BL/6J background
were created by Shanghai Biomodel Organism Science &
Technology Development as we reported previously (Mo et al.,
2016). Irisin-Tg mice were crossed with ApoE−/− mice to
generate Irisin-ApoE−/− mice (nWT = 34, nTg = 36, male). Mice
were fed a chow diet or Western diet for 8 weeks (42% of kcal
from fat, 0.2% cholesterol, Harland Tekland, TD88137). Mice
were euthanized with CO2.

Luciferase Reporter Gene Assay and
Chromatin Immunoprecipitation (ChIP)
Assay
The FNDC5 gene promoter (−3030 to −1890 bp) or mutant
FNDC5 gene promoter was cloned into the pGL3-Basic vector.
HEK293T cells were transfected with reporter constructs
in 48-well plates as described (The viability of cells were
above 90% under high magnification microscope). Cells
transfected with plasmid and treated with FXR agonists,
GW4064 or CDCA for 24 h, then collected and lysed, and
luciferase activity was measured. ChIP assay was performed
essentially as described previously (Mo et al., 2016; Kuang
et al., 2017). Briefly, cells transfected with FXR plasmid and
treated with or without FXR agonists (CDCA (100 µM) or
GW4064 (2.5 µM)) for 24 h. ChIP assays according to the
protocol of ChIP assay kit (MAGNA0002). After formaldehyde
cross-linking, the protein-DNA complexes were obtained by
Immunoprecipitated with antibody to FXR (sc-13063) or
control Immunoglobulin G (IgG) and quantified by quantitative
PCR (qPCR). PCR products were detected by 2% agarose
gel electrophoresis.
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Evaluation of Atherosclerosis
For en face quantification of atherosclerotic lesions in the
entire mouse aorta, whole aortas were collected, opened
longitudinally, and stained with Oil-red O (nWT = 10,
nTG = 10, nWTD-WT = 12, nWTD−−TG = 12). Images of
aortas were captured by microscopy (Nikon, Tokyo, Japan),
analyzed with Image J software, and presented as the percentage
of lesion area in the whole aorta. For quantification of
atherosclerotic lesions in the aortic sinus, serial cryosections
(6 µm) were stained with Oil-red O, then counterstained
with hematoxylin. Paraffin sections (4 µm) were stained with
hematoxylin and eosin.

Blood Cholesterol, Triglycerides, and
Irisin Assessment
Serum and biliary levels of cholesterol and triglycerides were
measured by using kits (Biosino, Beijing). To measure hepatic
and fecal levels of triglycerides and cholesterol, hepatic and fecal
lipid contents were extracted as described (Reza et al., 2017)
and measured by using commercial assay kits. Serum Irisin
level in blood samples was measured by commercially available
enzyme-linked immunosorbent assay (ELISA) kits (Phoenix
Pharmaceuticals, Cat EK-067-29).

Quantitative Real-Time RT-PCR
For real-time PCR analysis, total hepatic and intestinal
RNA was extracted with Trizol reagent (Invitrogen, Carlsbad,
CA, United States) and reverse-transcribed into cDNA by
reverse transcription with Superscript RT III enzyme (TaKaRa,
Kyoto, Japan). Quantitative real-time PCR involved use of
the CFX96 PCR system (Bio-Rad, CA, United States). The
primers for RT -PCR used in the studies are provided in
Supplementary Table 1.

Western Blot Analysis
Liver and intestines were lysed by using lysis buffer and
underwent western blot analysis with the primary antibodies
anti-Abcg5 (1:1000; sc-25796, Santa Cruz, CA, United States),
anti-Abcg8 (1:1000; sc-30111, Santa Cruz, CA, United States),
and β-tubulin (1:1000; 200608, Zen Bio Science, China). Bands
were visualized by using the LI-COR (Lincoln, NE, United States)
Odyssey System. Quantification of band intensity involved using
Image Studio v4.0 (LI-COR).

Statistical Analysis
Data are expressed as mean ± SEM. Statistical significance was
determined by Student’s t test (unpaired two-tailed) or one-way
ANOVA (Tukey’s test) for multiple comparisons. P < 0.05 was
considered statistically significant.

RESULTS

FNDC5 Is Regulated by FXR
To investigate the regulation of FNDC5/Irisin, we treated
primary human hepatocytes with different nuclear receptors

agonist (CITCO for CAR, CDCA/GW4064 for FXR, Rif for
PXR, GW3965 for LXR). FNDC5 expression was highly induced
by CDCA and GW4064, natural, and synthetic ligands for
FXR, respectively. This regulation appeared to be FXR-specific
because activation of pregnane X receptor or liver X receptor
had no effect on FNDC5 expression (Figure 1A). To further
confirm this result, we treated primary human hepatocytes
from 5 different cases with CDCA and GW4064 for 24 h. As
expected, CDCA or GW4064 increased the mRNA expression
of small heterodimer partner (SHP), an FXR target gene. In
all 5 cases, the expression of FNDC5 was highly induced by
both CDCA and GW4064 (Figure 1B). A hepatocarcinoma
cell line, HepG2 (ATCC HB-8065), also showed regulation
of FNDC5 by FXR (Figure 1C). To investigate whether FXR
could regulate FNDC5 expression in vivo, Rhesus macaques
were subcutaneously injected with a single dose of ivermectin,
a novel ligand for FXR15. Serum Irisin level was significantly
increased 24 h after ivermectin injection (Figure 1D). Hence,
FXR regulated FNDC5 expression both in vitro and in vivo. All
data are mean ± SEM, ∗p < 0.05.

FNDC5 Is a Direct Transcriptional Target
of FXR
Having demonstrated that FXR could regulate FNDC5
expression both in vitro and in vivo, we further investigated
whether FNDC5 is a direct transcriptional target of FXR.
Examination of the FNDC5 promoter revealed a putative
inverted repeat by one nucleotide (IR-1) binding site located
at −2619 bp (Supplementary Figure 1). Luciferase reporter
assays were used to determine whether FXR could regulate
FNDC5 promoter activity with a reporter gene that contains the
natural promoter of FNDC5 (−1890 to −3030 bp). On transient
transfection assay of HepG2 cells, reporter activity was induced
about 4- and 8-fold in the presence of CDCA and GW4604
(ligands of FXR), respectively (Figure 2A). Mutation of the IR-1
binding site resulted in loss of the FXR effect on reporter activity
(Figure 2B). ChIP assay was used to measure FXR transcriptional
activity on the FNDC5 gene promoter. Consistent with the
luciferase assay, treatment with CDCA/GW4064 significantly
increased the recruitment of FXR to the FNDC5 promoter
(Figures 2C,D). Thus, Irisin is a direct transcriptional target of
FXR. All data are mean ± SEM, ∗p < 0.05.

Improved Lipid Profiles in
Irisin-ApoE−/− Mice
For the limitations of the experimental conditions, there were
none human or Rhesus macaques used to study the metabolic
function of Irisin. However, the protein sequence is highly
conserved (Jedrychowski et al., 2015). The human and murine
sequences are identical. To understand the potential effect of
Irisin on cholesterol metabolism, a function of FXR, Irisin-tg
mice were bred with ApoE−/− mice (Mo et al., 2016). We then
evaluated the effect of Irisin on hyperlipidemia in ApoE−/−
mice fed a chow or Western diet. Serum levels of cholesterol and
triglycerides were significantly lower in Irisin-ApoE−/− than
ApoE−/− mice (Figures 3A,B) under both chow and Western
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FIGURE 1 | Activation of farnesoid X receptor (FXR) regulates fibronectin type III domain-containing protein 5 (FNDC5) expression. (A) Cultured human hepatocytes
were treated with different nuclear receptor agonists: CDCA (100 µM) and GW4064 (2.5 µM), agonists for FXR; Rif (5 µM), an agonist for human PXR; CITCO
(100 nM), an agonist for human CAR; and GW (10 µM), an agonist for liver X receptor α (LXRα) (n = 3) for 24 h. (B) FXR agonist induced (small heterodimer partner)
SHP and fibronectin type III domain-containing protein 5 (FNDC5) mRNA expression in cultured human hepatocytes from 5 different cases. (C) HepG2 cells were
treated with CDCA (100 µM) or GW4064 (2.5 µM) for 24 h (n = 4). (D) Rhesus macaques were subcutaneously injected with single dose of ivermectin (0.4 mg/kg)
and blood was collected 24 h later (n = 8). CDCA, chenodeoxycholic acid; Rif, rifamycin; GW, GW3965. Data are mean ± SEM (n = 4). ∗P < 0.05.

diets. The low level of cholesterol was mainly due to a decrease
in low-density lipoprotein (LDL)-cholesterol level (Figure 3C).
HDL-cholesterol level was increased in Irisin-ApoE−/− mice
(Figure 3D). Hepatic cholesterol and triglycerides levels were also

reduced in Irisin-ApoE−/− mice (Figures 3E,F). In agreement,
Oil-red O and H&E staining further confirm the improved
hepatic lipid profile in Irisin-ApoE−/− mice (Figures 3G,H). All
data are mean ± SEM, ∗p < 0.05.
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Irisin Promoted Cholesterol Transport
in Liver
To gain insights in the mechanisms by which Irisin prevented
hyperlipidemia in ApoE−/−mice, we analyzed the expression
of genes involved in cholesterol metabolism. First, we evaluated
the expression of genes involved in cholesterol synthesis. The
hepatic mRNA levels of Hmgcr and Hmgcs were not changed
among the genotypes (Figure 4A), nor was expression of
genes that convert cholesterol into bile acid, such as Cyp7a1,
Cyp8b1, Cyp27a1, and Cyp7b1 (Figure 4B). The efflux of
cholesterol from hepatocytes is mediated by two pathways. On
the sinusoidal side, cholesterol is transported to HDL via Abca1
and Abcg1 (Ye et al., 2011). On the apical side, cholesterol
is transported into bile via Abcg5 and Abcg8 (Graf et al.,
2003). The hepatic mRNA levels of Abca1 and Abcg1 were
significantly higher in Irisin-ApoE−/− than ApoE−/− mice
(Figure 4C). The increased expression of Abca1 and Abcg1 may
explain the higher serum level of HDL-cholesterol. Moreover,
overexpression of Irisin significantly increased both the mRNA
and protein expression of Abcg5 and Abcg8 (Figures 4C–E).
We also detect the mRNA level in Irisin-tg and WT mice.
The mRNA level of Abcg5 and Abcg8 were significantly
increased in Irisin-tg mice compare to WT mice (data not
shown). As a result, the biliary cholesterol level was higher

in Irisin-ApoE−/− mice (Figure 4F). All data are mean
± SEM, ∗p < 0.05.

Irisin Increases the Intestinal Expression
of Abcg5 and Abcg8
Intestine is also crucially involved in the maintenance of serum
HDL levels (Brunham et al., 2006). Intestinal Abca1 directly
contributes to HDL biogenesis (Gelissen et al., 2006). Abcg1 has
been shown to facilitate cholesterol efflux from cells to HDL
particles and is proposed to participate in the generation of
HDL particles in concert with Abca1 (Gelissen et al., 2006).
Irisin increased the intestinal expression of Abca1 (Figure 5A).
ABCG5 and ABCG8 are also expressed in the intestine and are
involved in intestinal cholesterol absorption. The mRNA and
protein expression of Abcg5 and Abcg8 was increased in ileum
(Figures 5B–D). We also detect the mRNA level in Irisin-tg
and WT mice. The mRNA level of Abcg5 and Abcg8 were
significantly increased in Irisin-tg mice compare to WT mice
(data not shown). Of note, the Npc1l1 level was not changed
in Irisin-tg mice (Figure 5B). Moreover, fecal cholesterol level
was higher in Irisin-ApoE−/− than ApoE−/− mice (Figure 5E).
These studies indicate that overexpression of Irisin increased the
intestinal expression of Abcg5/Abcg8 and promoted cholesterol
excretion into feces. All data are mean ± SEM, ∗p < 0.05.
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bile acid synthesis genes (n = 8). (C) mRNA expression of hepatic cholesterol transporters (n = 6). (D,E) Protein levels of hepatic Abcg5 and Abcg8 in mice (n = 3).
(F) Biliary cholesterol level in mice (n = 5). Data are means ± SEM. ∗P < 0.05; ∗∗∗P < 0.001.

Irisin Alleviated Atherosclerotic Plaque
Formation in ApoE−/− Mice
Because LDL-cholesterol level was decreased and HDL-
cholesterol level increased in Irisin-tg mice, we hypothesized
that Irisin may play an important role in atherosclerosis.
To investigate the effect of Irisin on atherosclerosis, Irisin-
ApoE−/− and ApoE−/− mice were fed a chow or Western
diet for 2 months. Analysis of plaque in the aortic arches
demonstrated significantly less atherosclerotic plaques in Irisin
-ApoE−/− than ApoE−/− mice and also less lipid at the
cardiac/aortic junction (Figures 6A,B). Furthermore, the total
lesion area at the cardiac/aortic junctions was significantly
decreased in Irisin-ApoE−/− than ApoE−/− mice fed a chow
or Western diet (Figure 6C). The whole aorta showed 50–70%

lower lipid staining in Irisin-ApoE−/− than ApoE−/− mice
fed a chow or Western diet (Figure 6D). These studies indicate
that Irisin alleviated atherosclerotic plaque formation, most
likely representing atherosclerotic severity in the ApoE−/− mice
model. All data are mean ± SEM, ∗p < 0.05.

DISCUSSION

Here we show that activation of FXR induced FNDC5 mRNA
level in the human hepatocytes and increased circulating Irisin
level in rhesus monkeys. We also showed that FNDC5 is a
direct transcriptional target of FXR. In vivo, overexpression
of Irisin alleviated atherosclerosis in ApoE−/− mice.
Mechanistic studies revealed that Irisin enhanced cholesterol
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efflux from the body by upregulating hepatic and intestinal
Abcg5/Abcg8 expression.

In our previous study, we showed that FNDC5/Irisin is
regulated by CAR as a direct target gene in mice (Mo et al., 2016).
However, in the present study, FNDC5/Irisin was controlled
by FXR in primates. This species difference is likely due
to unconcerned sequences located in the promotor region
of FNDC5. We found the classical nuclear receptor-response
element of FXR, IR-1, located in the promoter of FNDC5 in
primates, whereas a nuclear receptor-response element of CAR,
the direct repeat spaced by five nucleotides (DR5-type), was
located in the promoter of FNDC5 in rodent. This could explain
why FNSC5 is differentially regulated in primates and rodents.

Irisin has been reported to be associated with cholesterol
metabolism (Tang et al., 2015). Circulating levels of Irisin
were positively correlated with HDL-cholesterol but negatively
with total cholesterol, LDL-cholesterol, and triglycerides
levels (Huh et al., 2012; Tang et al., 2015; Dozio et al.,
2017). Lentivirus-mediated overexpression of FNDC5/Irisin
or subcutaneous perfusion of Irisin reduced blood levels of
triglycerides, cholesterol, free fatty acid, and glucose in obese
mice (Xiong et al., 2015). In addition, adenovirus-overexpressed
Irisin and Irisin-tg mice are protected against high-fat-
diet–induced hepatic steatosis and suppressed triglycerides
accumulation via the AMPK pathway (Mo et al., 2016).
Subcutaneous infusion of Irisin for 2 weeks reduced plasma and
hepatic cholesterol levels in obese mice induced by an high fat
diet via AMPK signaling (Tang et al., 2016).

We found that Irisin decreased blood cholesterol level. The
lower level of cholesterol seen in Irisin-transgenic than wild-type
mice was mainly due to a decrease in level of LDL-cholesterol
but not HDL-cholesterol. Cholesterol homeostasis in the body
is maintained mainly by de novo synthesis, intestinal absorption,
and biliary and fecal excretion (Litvinov et al., 2016). The de novo
synthesis of cholesterol seems not to be affected by Irisin because
the hepatic levels of Hmgcr and Hmgcs were not changed in
Irisin-ApoE−/− mice. The intestinal cholesterol absorption is
determined by Npc1L1 and ABCG5/ABCG8. Npc1l1 promoted
cholesterol absorption by mediating cholesterol transport across
the brush border membrane (Hui et al., 2008). However,
Abcg5 and Abcg8 form an obligate heterodimer that limits
intestinal absorption (Yu et al., 2014). We found that Irisin
increased the intestinal expression of Abcg5 and Abcg8 but
did not change that of Npc1l1. The increased expression
of Abcg5/Abcg8 may decrease the intestinal absorption of
cholesterol. Hepatic ABCG5/ABCG8 plays a key role in biliary
secretion of cholesterol. We found that overexpression of Irisin
increased the mRNA and protein levels of Abcg5/Abcg8 in liver.
Consistent with the higher expression of Abcg5/Abcg8, the biliary
concentration of cholesterol was higher. Therefore, the higher
expression of Abcg5/Abcg8 in both liver and intestine might work
together to prevent excess cholesterol accumulation in the body.

Irisin has been found as an anti-atherogenic transcription
factor (Lu et al., 2015; Zhang et al., 2016). First, Lu et al.
(2015) found that tail vein injection of Irisin protected against
atherosclerosis in diabetic ApoE−/− mice by ameliorating
high glucose-induced endothelial dysfunction and apoptosis.

Recently, Zhang et al. (2016) demonstrated that intraperitoneal
injection of Irisin decreased inflammation and cell apoptosis
in aortic tissues. We found a new role of Irisin in cholesterol
homeostasis in Irisin-transgenic mice, an animal model to
expression Irisin a long-term.

CONCLUSION

We reveal a novel pathway regulating expression of Irisin.
Overexpression of Irisin decreased hyperlipidemia and alleviated
atherosclerosis in ApoE−/− mice. Irisin upregulated hepatic and
intestinal Abcg5/Abcg8 expression, leading to increased biliary
cholesterol excretion and fecal cholesterol output. Irisin may be
a novel therapeutic strategy for dyslipidemia and atherosclerosis.
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