117 research outputs found

    Interference-aware coordinated power allocation in autonomous Wi-Fi environment

    Full text link
    Self-managed access points (APs) with growing intelligence can optimize their own performances but pose potential negative impacts on others without energy ef ciency. In this paper, we focus on modeling the coordinated interaction among interest-independent and self-con gured APs, and conduct the power allocation case study in the autonomous Wi-Fi scenario. Speci cally, we build a `coordination Wi-Fi platform (CWP), a public platform for APs interacting with each other. OpenWrt-based APs in the physical world are mapped to virtual agents (VAs) in CWP, which communicate with each other through a standard request-reply process de ned as AP talk protocol (ATP).With ATP, an active interference measurement methodology is proposed re ecting both in-range interference and hidden terminal interference, and the Nash bargaining-based power control is further formulated for interference reductions. CWP is deployed in a real of ce environment, where coordination interactions between VAs can bring a maximum 40-Mb/s throughput improvement with the Nash bargaining-based power control in the multi-AP experiments

    Comparison of ground reaction forces as running speed increases between male and female runners

    Get PDF
    Introduction: The biomechanics associated with human running are affected by gender and speed. Knowledge regarding ground reaction force (GRF) at various running speeds is pivotal for the prevention of injuries related to running. This study aimed to investigate the gait pattern differences between males and females while running at different speeds, and to verify the relationship between GRFs and running speed among both males and females

    PRUB: A Privacy Protection Friend Recommendation System Based on User Behavior

    Get PDF
    The fast developing social network is a double-edged sword. It remains a serious problem to provide users with excellent mobile social network services as well as protecting privacy data. Most popular social applications utilize behavior of users to build connection with people having similar behavior, thus improving user experience. However, many users do not want to share their certain behavioral information to the recommendation system. In this paper, we aim to design a secure friend recommendation system based on the user behavior, called PRUB. The system proposed aims at achieving fine-grained recommendation to friends who share some same characteristics without exposing the actual user behavior. We utilized the anonymous data from a Chinese ISP, which records the user browsing behavior, for 3 months to test our system. The experiment result shows that our system can achieve a remarkable recommendation goal and, at the same time, protect the privacy of the user behavior information

    Comparative Analysis of Small-Scale Organic Rankine Cycle Systems for Solar Energy Utilisation

    Get PDF
    Small-scale organic Rankine cycle (ORC) systems driven by solar energy are compared in this paper, which aims to explore the potential of power generation for domestic utilisation. A solar thermal collector was used as the heat source for a hot water storage tank. Thermal performance was then evaluated in terms of both the conventional ORC and an ORC using thermal driven pump (TDP). It is established that the solar ORC using TDP has a superior performance to the conventional ORC under most working conditions. Results demonstrate that power output of the ORC using TDP ranges from 72 W to 82 W with the increase of evaporating temperature, which shows an improvement of up to 3.3% at a 100 °C evaporating temperature when compared with the power output of the conventional ORC. Energy and exergy efficiencies of the ORC using TDP increase from 11.3% to 12.6% and from 45.8% to 51.3% when the evaporating temperature increases from 75 °C to 100 °C. The efficiency of the ORC using TDP is improved by up to 3.27%. Additionally, the exergy destruction using TDP can be reduced in the evaporator and condenser. The highest exergy efficiency in the evaporator is 96.9%, an improvement of 62% in comparison with that of the conventional ORC, i.e., 59.9%. Thus, the small-scale solar ORC system using TDP is more promising for household application

    Skyrmion-Bubble Bundles in an X-type Sr2Co2Fe28O46 Hexaferrite above Room Temperature

    Full text link
    Magnetic skyrmions are spin swirls that possess topological nontriviality and are considered particle-like entities. They are distinguished by an integer topological charge Q. The presence of skyrmion bundles provides an opportunity to explore the range of values for Q, which is crucial for the advancement of topological spintronic devices with multi-Q properties. In this study, we present a new material candidate, Sr2Co2Fe28O46 hexaferrite of the X-type, which hosts small dipolar skyrmions at room temperature and above. By exploiting reversed magnetic fields from metastable skyrmion bubbles at zero fields, we can incorporate skyrmion-bubble bundles with different interior skyrmion/bubble numbers, topological charges, and morphologies at room temperature. Our experimental findings are consistently supported by micromagnetic simulations. Our results highlight the versatility of topological spin textures in centrosymmetric uniaxial magnets, thereby paving the way for the development of room-temperature topological spintronic devices with multi-Q characteristics.Comment: https://doi.org/10.1002/adma.20230611

    Expression of miR-126 and its potential function in coronary artery disease

    Get PDF
    Objective: This study aimed to explore the role of miR-126 in coronary artery disease (CAD) patients and the potential gene targets of miR-126 in atherosclerosis.Methodology: A total of 60 CAD patients and 25 healthy control subjects were recruited in this study. Among the 60 CAD patients, 18 cases were diagnosed of stable angina pectoris (SAP), 20 were diagnosed of unstable angina pectoris (UAP) and 22 were diagnosed of acute myocardial infarction (AMI). Plasma miR-126 levels from both groups of participants were analyzed by real-time quantitative PCR. ELISA was used to measure plasma level of placenta growth factor (PLGF).Results: The results showed that the miR-126 expression was significantly down-regulated in the circulation of CAD patients compared with control subjects (P<0.01). Plasma PLGF level was significantly upregulated in patients with unstable angina pectoris and acute myocardial infarction (AMI) compared with controls (both P<0.01) the miR-126 expression in AMI was significantly associated with PLGF.Conclusion: miR-126 may serve as a novel biomarker for CAD.Keywords: miR-126; PLGF; PCR; coronary artery disease; atherosclerosi

    New insights for the design of bionic robots:adaptive motion adjustment strategies during feline landings

    Get PDF
    Felines have significant advantages in terms of sports energy efficiency and flexibility compared with other animals, especially in terms of jumping and landing. The biomechanical characteristics of a feline (cat) landing from different heights can provide new insights into bionic robot design based on research results and the needs of bionic engineering. The purpose of this work was to investigate the adaptive motion adjustment strategy of the cat landing using a machine learning algorithm and finite element analysis (FEA). In a bionic robot, there are considerations in the design of the mechanical legs. (1) The coordination mechanism of each joint should be adjusted intelligently according to the force at the bottom of each mechanical leg. Specifically, with the increase in force at the bottom of the mechanical leg, the main joint bearing the impact load gradually shifts from the distal joint to the proximal joint; (2) the hardness of the materials located around the center of each joint of the bionic mechanical leg should be strengthened to increase service life; (3) the center of gravity of the robot should be lowered and the robot posture should be kept forward as far as possible to reduce machine wear and improve robot operational accuracy

    Observation of Hybrid Magnetic Skyrmion Bubbles in Fe3Sn2 Nanodisks

    Full text link
    It is well known that there are two types of magnetic bubbles in uniaxial magnets. Here, using Lorentz-transimission electronic microscopy magnetic imaging, we report the direct experimental observation of 3D type-III hybrid bubbles, which comprise N\'eel-twisted skyrmion bubbles with topological charge Q = -1 in near-surface layers and type-II bubbles with Q = 0 in interior layers, in Fe3Sn2 nanodisks. Using the tilted magnetic field, we further show the controlled topological magnetic transformations of three types of bubbles in a confined ferromagnetic nanodisk. Our observations are well reproduced using micromagnetic simulations based on measured magnetic parameters. Our results advance fundamental classification and understanding of magnetic bubbles, which could propel the applications of three-dimensional magnetism.Comment: https://doi.org/10.1103/PhysRevB.107.17442

    Current-Controlled Skyrmion Number in Confined Ferromagnetic Nanostripes

    Full text link
    Skyrmions are vortex-like localized magnetic structures that possess an integer-valued topological index known as the skyrmion number or topological charge. Skyrmion number determines the topology-related emergent magnetism, which is highly desirable for advanced storage and computing devices. In order to achieve device functions, it is necessary to manipulate the skyrmion number in confined nanostructured geometries using electrical methods. Here, we report the reliable current-controlled operations for manipulating the skyrmion number through reversible topological transformations between skyrmion chains and stripe domains in confined Fe3Sn2 nanostripes. The results of micromagnetic simulations are successful in numerically reproducing our experiments and explaining them through the combined effect of current-induced Joule heating and magnetic hysteresis. These findings hold the potential to advance the development of topological spintronic devices.Comment: https://doi.org/10.1002/adfm.20230404

    Expression of miR-126 and its potential function in coronary artery disease.

    Get PDF
    Objective: This study aimed to explore the role of miR-126 in coronary artery disease (CAD) patients and the potential gene targets of miR-126 in atherosclerosis. Methodology: A total of 60 CAD patients and 25 healthy control subjects were recruited in this study. Among the 60 CAD patients, 18 cases were diagnosed of stable angina pectoris (SAP), 20 were diagnosed of unstable angina pectoris (UAP) and 22 were diagnosed of acute myocardial infarction (AMI). Plasma miR-126 levels from both groups of participants were analyzed by real-time quantitative PCR. ELISA was used to measure plasma level of placenta growth factor (PLGF). Results: The results showed that the miR-126 expression was significantly down-regulated in the circulation of CAD patients compared with control subjects (P<0.01). Plasma PLGF level was significantly upregulated in patients with unstable angina pectoris and acute myocardial infarction (AMI) compared with controls (both P<0.01) the miR-126 expression in AMI was significantly associated with PLGF. Conclusion: miR-126 may serve as a novel biomarker for CAD
    corecore