3,798 research outputs found

    Multicast broadcast services support in OFDMA-based WiMAX systems [Advances in mobile multimedia]

    Get PDF
    Multimedia stream service provided by broadband wireless networks has emerged as an important technology and has attracted much attention. An all-IP network architecture with reliable high-throughput air interface makes orthogonal frequency division multiplexing access (OFDMA)-based mobile worldwide interoperability for microwave access (mobile WiMAX) a viable technology for wireless multimedia services, such as voice over IP (VoIP), mobile TV, and so on. One of the main features in a WiMAX MAC layer is that it can provide'differentiated services among different traffic categories with individual QoS requirements. In this article, we first give an overview of the key aspects of WiMAX and describe multimedia broadcast multicast service (MBMS) architecture of the 3GPP. Then, we propose a multicast and broadcast service (MBS) architecture for WiMAX that is based on MBMS. Moreover, we enhance the MBS architecture for mobile WiMAX to overcome the shortcoming of limited video broadcast performance over the baseline MBS model. We also give examples to demonstrate that the proposed architecture can support better mobility and offer higher power efficiency

    Sample entropy analysis of EEG signals via artificial neural networks to model patients' consciousness level based on anesthesiologists experience.

    Get PDF
    Electroencephalogram (EEG) signals, as it can express the human brain's activities and reflect awareness, have been widely used in many research and medical equipment to build a noninvasive monitoring index to the depth of anesthesia (DOA). Bispectral (BIS) index monitor is one of the famous and important indicators for anesthesiologists primarily using EEG signals when assessing the DOA. In this study, an attempt is made to build a new indicator using EEG signals to provide a more valuable reference to the DOA for clinical researchers. The EEG signals are collected from patients under anesthetic surgery which are filtered using multivariate empirical mode decomposition (MEMD) method and analyzed using sample entropy (SampEn) analysis. The calculated signals from SampEn are utilized to train an artificial neural network (ANN) model through using expert assessment of consciousness level (EACL) which is assessed by experienced anesthesiologists as the target to train, validate, and test the ANN. The results that are achieved using the proposed system are compared to BIS index. The proposed system results show that it is not only having similar characteristic to BIS index but also more close to experienced anesthesiologists which illustrates the consciousness level and reflects the DOA successfully.This research is supported by the Center forDynamical Biomarkers and Translational Medicine, National Central University, Taiwan, which is sponsored by Ministry of Science and Technology (Grant no. MOST103-2911-I-008-001). Also, it is supported by National Chung-Shan Institute of Science & Technology in Taiwan (Grant nos. CSIST-095-V301 and CSIST-095-V302)

    Defluoridation by magnesia–pullulan: Surface complexation modeling and pH neutralization of treated fluoride water by aluminum

    Full text link
    © 2018 Taiwan Institute of Chemical Engineers The magnesia–pullulan composite (MgOP) achieved effective fluoride removal in previous research. In the present study, an acid-base titration experiment was conducted to investigate the properties of MgOP surface and further explore the mechanism of fluoride adsorption on MgOP. Results showed that the presence of chloride ions could improve fluoride adsorption on MgOP; however, additional nitrate ions had negligible impacts. A diffuse layer model and chemical equilibrium software (Visual MINTEQ 3.1) were used to simulate the acid-base titration data. The effects of initial pH values on the rate of fluoride uptake by MgOP were also studied. Moreover, aluminum salts were added to the fluoride solution with MgOP for the pH neutralization of treated water, in which aluminum chloride was preferred

    Fluoride removal from water using a magnesia-pullulan composite in a continuous fixed-bed column

    Full text link
    © 2017 Elsevier Ltd A magnesia-pullulan composite (MgOP) was previously shown to effectively remove fluoride from water. In the present study, a continuous fixed-bed column was used to examine the application of the composite at an industrial scale. The influencing parameters included bed mass (4.0, 6.0 and 8.0 g), influent flow rate (8, 16 and 32 mL/min), inlet fluoride concentration (5, 10 and 20 mg/L), reaction temperature (20, 30 and 40 °C), influent pH (4, 7 and 10) and other existing anions (HCO3−, SO42−, Cl− and NO3−), through which the breakthrough curves could be depicted for the experimental data analysis. The results indicated that MgOP is promising for fluoride removal with a defluoridation capacity of 16.6 mg/g at the bed mass of 6.0 g, influent flow rate of 16 mL/min and inlet fluoride concentration of 10 mg/L. The dynamics of the fluoride adsorption process were modeled using the Thomas and Yan models, in which the Yan model presented better predictions for the breakthrough curves than the Thomas model. Moreover, the concentration of magnesium in the effluent was monitored to determine Mg stability in the MgOP composite. Results indicated the effluent concentration of Mg2+ ions could be kept at a safe level. Calcination of fluoride-loaded MgOP effectively regenerated the material

    The adsorption of phosphate using a magnesia–pullulan composite: Kinetics, equilibrium, and column tests

    Full text link
    © Springer-Verlag GmbH Germany, part of Springer Nature 2019. Amagnesia–pullulan (MgOP) composite has been developed to remove phosphate from a synthetic solution. In the present study, the removal of phosphate by MgOP was evaluated in both a batch and dynamic system. The batch experiments investigated the initial pH effect on the phosphate removal efficiency from pH 3 to 12 and the effect of co-existing anions. In addition, the adsorption isotherms, thermodynamics, and kinetics were also investigated. The results from the batch experiments indicate that MgOP has encouraging performance for the adsorption of phosphate, while the initial pH value (3–12) had a negligible influence on the phosphate removal efficiency. Analysis of the adsorption thermodynamics demonstrated that the phosphate removal process was endothermic and spontaneous. Investigations into the dynamics of the phosphate removal process were carried out using a fixed bed of MgOP, and the resulting breakthrough curves were used to describe the column phosphate adsorption process at various bed masses, volumetric flow rates, influent phosphate concentrations, reaction temperatures, and inlet pH values. The results suggest that the adsorption of phosphate on MgOP was improved using an increased bed mass, while the reaction temperature did not significantly affect the performance of the MgOP bed during the phosphate removal process. Furthermore, higher influent phosphate concentrations were beneficial towards increasing the column adsorption capacity for phosphate. Several mathematic models, including the Adams–Bohart, Wolboska, Yoon–Nelson, and Thomas models, were employed to fit the fixed-bed data. In addition, the effluent concentration of magnesium ions was measured and the regeneration of MgOP investigated

    Effect of hydraulic retention time on the performance of a hybrid moving bed biofilm reactor-membrane bioreactor system for micropollutants removal from municipal wastewater

    Get PDF
    © 2017 Elsevier Ltd This study evaluated micropollutants removal and membrane fouling behaviour of a hybrid moving bed biofilm reactor-membrane bioreactor (MBBR-MBR) system at four different hydraulic retention times (HRTs) (24, 18, 12 and 6 h). The results revealed that HRT of 18 h was the optimal condition regarding the removal of most selected micropollutants. As the primary removal mechanism in the hybrid system was biodegradation, the attached growth pattern was desirable for enriching slow growing bacteria and developing a diversity of biocoenosis. Thus, the efficient removal of micropollutants was obtained. In terms of membrane fouling propensity analysis, a longer HRT (e.g. HRTs of 24 and 18 h) could significantly mitigate membrane fouling when compared with the shortest HRT of 6 h. Hence, enhanced system performance could be achieved when the MBBR-MBR system was operated at HRT of 18 h

    Role of peripheral quantitative computed tomography in identifying disuse osteoporosis in paraplegia

    Get PDF
    Objective: Disuse osteoporosis is a major long-term health consequence of spinal cord injury (SCI) that still needs to be addressed. Its management in SCI should begin with accurate diagnosis, followed by targeted treatments in the most vulnerable subgroups. We present data quantifying disuse osteoporosis in a cross-section of the Scottish paraplegic population to identify subgroups with lowest bone mineral density (BMD). Materials and Methods: Forty-seven people with chronic SCI at levels T2-L2 were scanned using peripheral Quantitative Computed Tomography (pQCT) at four tibial sites and two femoral sites, at the Queen Elizabeth National Spinal Injuries Unit, Glasgow (U.K.). At the distal epiphyses, trabecular BMD (BMDtrab), total BMD, total bone cross-sectional area (CSA), and bone mineral content (BMC) were determined. In the diaphyses, cortical BMD, total bone CSA, cortical CSA, and BMC were calculated. Bone, muscle and fat CSAs were estimated in the lower leg and thigh. Results: BMDtrab decreased exponentially with time since injury, at different rates in the tibia and femur. At most sites, female paraplegics had significantly lower BMC, total bone CSA and muscle CSA than male paraplegics. Subjects with lumbar SCI tended to have lower bone values and smaller muscle CSAs than in thoracic SCI. Conclusion: At the distal epiphyses of the tibia and femur, there is generally a rapid and extensive reduction in BMDtrab after SCI. Female subjects, and those with lumbar SCI, tend to have lower bone values than males or those with thoracic SCI, respectively. Keywords: Bone loss, osteoporosis, paraplegia, peripheral Quantitative Computed Tomography, spinal cord injur

    New Fe-based superconductors: properties relevant for applications

    Full text link
    Less than two years after the discovery of high temperature superconductivity in oxypnictide LaFeAs(O,F) several families of superconductors based on Fe layers (1111, 122, 11, 111) are available. They share several characteristics with cuprate superconductors that compromise easy applications, such as the layered structure, the small coherence length, and unconventional pairing, On the other hand the Fe-based superconductors have metallic parent compounds, and their electronic anisotropy is generally smaller and does not strongly depend on the level of doping, the supposed order parameter symmetry is s wave, thus in principle not so detrimental to current transmission across grain boundaries. From the application point of view, the main efforts are still devoted to investigate the superconducting properties, to distinguish intrinsic from extrinsic behaviours and to compare the different families in order to identify which one is the fittest for the quest for better and more practical superconductors. The 1111 family shows the highest Tc, huge but also the most anisotropic upper critical field and in-field, fan-shaped resistive transitions reminiscent of those of cuprates, while the 122 family is much less anisotropic with sharper resistive transitions as in low temperature superconductors, but with about half the Tc of the 1111 compounds. An overview of the main superconducting properties relevant to applications will be presented. Upper critical field, electronic anisotropy parameter, intragranular and intergranular critical current density will be discussed and compared, where possible, across the Fe-based superconductor families

    Effects of suspended titanium dioxide nanoparticles on cake layer formation in submerged membrane bioreactor

    Full text link
    Effects of the suspended titanium dioxide nanoparticles (TiO2 NPs, 50mg/L) on the cake layer formation in a submerged MBR were systematically investigated. With nanometer sizes, TiO2 NPs were found to aggravate membrane pore blocking but postpone cake layer fouling. TiO2 NPs showed obvious effects on the structure and the distribution of the organic and the inorganic compounds in cake layer. Concentrations of fatty acids and cholesterol in the cake layer increased due to the acute response of bacteria to the toxicity of TiO2 NPs. Line-analysis and dot map of energy-dispersive X-ray were also carried out. Since TiO2 NPs inhibited the interactions between the inorganic and the organic compounds, the inorganic compounds (especially SiO2) were prevented from depositing onto the membrane surface. Thus, the postponed cake layer fouling was due to the changing features of the complexes on the membrane surface caused by TiO2 NPs. © 2013 Elsevier Ltd

    MPM based simulation for various solid deformation

    Get PDF
    Solid materials are responsible for many interesting phenomena. There are various types of them such as deformable objects and granular materials. In this paper, we present an MPM based framework to simulate the wide range of solid materials. In this framework, solid mechanics is based on the elastoplastic model, where we use von Mises criterion for deformable objects, and the Drucker-Prager model with non-associated plastic flow rules for granular materials. As a result, we can simulate different kinds of deformation of deformable objects and sloping failure for granular materials
    • 

    corecore