20 research outputs found

    Nitroxide-Based Macromolecular Contrast Agents with Unprecedented Transverse Relaxivity and Stability for Magnetic Resonance Imaging of Tumors

    Get PDF
    Metal-free magnetic resonance imaging (MRI) agents could overcome the established toxicity associated with metal-based agents in some patient populations and enable new modes of functional MRI in vivo. Herein, we report nitroxidefunctionalized brush-arm star polymer organic radical contrast agents (BASP-ORCAs) that overcome the low contrast and poor in vivo stability associated with nitroxide-based MRI contrast agents. As a consequence of their unique nanoarchitectures, BASP-ORCAs possess per-nitroxide transverse relaxivities up to ∼44-fold greater than common nitroxides, exceptional stability in highly reducing environments, and low toxicity. These features combine to provide for accumulation of a sufficient concentration of BASP-ORCA in murine subcutaneous tumors up to 20 h following systemic administration such that MRI contrast on par with metal-based agents is observed. BASP-ORCAs are, to our knowledge, the first nitroxide MRI contrast agents capable of tumor imaging over long time periods using clinical high-field 1H MRI techniques. Includes Supplementary materia

    The evolution of cyclopropenium ions into functional polyelectrolytes

    Get PDF
    Versatile polyelectrolytes with tunable physical properties have the potential to be transformative in applications such as energy storage, fuel cells and various electronic devices. Among the types of materials available for these applications, nanostructured cationic block copolyelectrolytes offer mechanical integrity and well-defined conducting paths for ionic transport. To date, most cationic polyelectrolytes bear charge formally localized on heteroatoms and lack broad modularity to tune their physical properties. To overcome these challenges, we describe herein the development of a new class of functional polyelectrolytes based on the aromatic cyclopropenium ion. We demonstrate the facile synthesis of a series of polymers and nanoparticles based on monomeric cyclopropenium building blocks incorporating various functional groups that affect physical properties. The materials exhibit high ionic conductivity and thermal stability due to the nature of the cationic moieties, thus rendering this class of new materials as an attractive alternative to develop ion-conducting membranes

    Pro-organic radical contrast agents (“pro-ORCAs”) for real-time MRI of pro-drug activation in biological systems

    Get PDF
    Nitroxide-based organic-radical contrast agents (ORCAs) are promising as safe next-generation magnetic resonance imaging (MRI) tools. Nevertheless, stimuli-responsive ORCAs that enable MRI monitoring of prodrug activation have not been reported; such systems could open new avenues for prodrug validation and image-guided drug delivery. Here, we introduce a novel “pro-ORCA” concept that addresses this challenge. By covalent conjugation of nitroxides and drug molecules (doxorubicin, DOX) to the same brush-arm star polymer (BASP) through chemically identical cleavable linkers, we demonstrate that pro-ORCA and prodrug activation, i.e., ORCA and DOX release, leads to significant changes in MRI contrast that correlate with cytotoxicity. This approach is shown to be general for a range of commonly used linker cleavage mechanisms (e.g., photolysis and hydrolysis) and release rates. Pro-ORCAs could find applications as research tools or clinically viable “reporter theranostics” for in vitro and in vivo MRI-correlated prodrug activation

    The synthesis of unimolecular polymers through iterative exponential growth and their applications in block copolymer phase segregation and biological systems

    No full text
    Thesis: Ph. D., Massachusetts Institute of Technology, Department of Chemistry, 2019Cataloged from PDF version of thesis.Includes bibliographical references.Absolute structural control over polymers - in terms of sequence, length, and stereochemistry - is a Holy Grail of polymer science. Inspired by Nature, polymer chemists over the last century have sought new methods and strategies to control these parameters. An inverse relationship exists, however, between the ability to control the primary structure of a macromolecule and the ability to scale the production of the same macromolecule. In this thesis, we describe the application of iterative exponential growth (IEG) toward the scalable synthesis of sequence-defined, unimolecular, chiral polymers. Using this strategy, we have created a wide array of functional molecularly precise polymers of up to 12.1k kDa in molar mass with various side chains for applications in block copolymer phase segregation, lectin binding, and nanoparticle formulations.by Yivan Jiang.Ph. D.Ph.D. Massachusetts Institute of Technology, Department of Chemistr

    Scalable Synthesis of Multivalent Macromonomers for ROMP

    No full text
    The polymerization of functional monomers provides direct access to functional polymers without need for postpolymerization modification; however, monomer synthesis can become a bottleneck of this approach. New methods that enable rapid installation of functionality into monomers for living polymerization are valuable. Here, we report the three-step convergent synthesis (two-step longest linear sequence) of a divalent exo-norbornene imide capable of efficient coupling with various nucleophiles and azides to produce diversely functionalized branched macromonomers optimized for ring-opening metathesis polymerization (ROMP). In addition, we describe an efficient iterative procedure for the synthesis of tri- and tetra-valent branched macromonomers. We demonstrate the use of these branched macromonomers for the synthesis of Janus bottlebrush block copolymers as well as for the generation of bottlebrush polymers with up to three conjugated small molecules per repeat unit. This work significantly expands the scalability and diversity of nanostructured macromolecules accessible via ROMP.National Institutes of Health (U.S.) (Grant 1R01CA220468-01)United States. Air Force. Office of Scientific Research (Grant FA9550-14-1-0292)United States. Department of Energy. Office of Science (Contract DE-AC02-06CH11357)United States. Department of Energy. Office of Science (Contract DE-SC0012704

    Nitroxide-Based Macromolecular Contrast Agents with Unprecedented Transverse Relaxivity and Stability for Magnetic Resonance Imaging of Tumors

    Get PDF
    Metal-free magnetic resonance imaging (MRI) agents could overcome the established toxicity associated with metal-based agents in some patient populations and enable new modes of functional MRI in vivo. Herein, we report nitroxide-functionalized brush-arm star polymer organic radical contrast agents (BASP-ORCAs) that overcome the low contrast and poor in vivo stability associated with nitroxide-based MRI contrast agents. As a consequence of their unique nanoarchitectures, BASP-ORCAs possess per-nitroxide transverse relaxivities up to ∼44-fold greater than common nitroxides, exceptional stability in highly reducing environments, and low toxicity. These features combine to provide for accumulation of a sufficient concentration of BASP-ORCA in murine subcutaneous tumors up to 20 h following systemic administration such that MRI contrast on par with metal-based agents is observed. BASP-ORCAs are, to our knowledge, the first nitroxide MRI contrast agents capable of tumor imaging over long time periods using clinical high-field (1)H MRI techniques

    Quantitative Mapping of Molecular Substituents to Macroscopic Properties Enables Predictive Design of Oligoethyleneglycol-Based Lithium Electrolytes

    No full text
    Molecular details often dictate the macroscopic properties of materials, yet, due to their vastly different length scales, relationships between molecular structure and bulk properties are often difficult to predict a priori, requiring Edisonian optimizations and preventing rational design. Here, we introduce an easy-to-execute strategy based on linear free energy relationships (LFERs) that enables quantitative correlation and prediction of how molecular modifications, i.e., substituents, impact the ensemble properties of materials. First, we developed substituent parameters based on inexpensive, DFT-computed energetics of elementary pairwise interactions between a given substituent and other constant components of the material. These substituent parameters were then used as inputs to regression analyses of experimentally measured bulk properties, generating a predictive statistical model. We applied this approach to a widely studied class of electrolyte materials: oligo-ethylene glycol (OEG)-LiTFSI mixtures; the resulting model enables elucidation of fundamental physical principles that govern the properties of these electrolytes and also enables prediction of the properties of novel, improved OEG-LiTFSI-based electrolytes. The framework presented here for using context-specific substituent parameters will potentially enhance the throughput of screening new molecular designs for next-generation energy storage devices and other materials-oriented contexts where classical substituent parameters (e.g., Hammett parameters) may not be available or effective.</p
    corecore