2,090 research outputs found

    A new green's function formulation for modeling homogeneous objects in layered medium

    Get PDF
    A new Green's function formulation is developed systematically for modeling general homogeneous (dielectric or magnetic) objects in a layered medium. The dyadic form of the Green's function is first derived based on the pilot vector potential approach. The matrix representation in the moment method implementation is then derived by applying integration by parts and vector identities. The line integral issue in the matrix representation is investigated, based on the continuity property of the propagation factor and the consistency of the primary term and the secondary term. The extinction theorem is then revisited in the inhomogeneous background and a surface integral equation for general homogeneous objects is set up. Different from the popular mixed potential integral equation formulation, this method avoids the artificial definition of scalar potential. The singularity of the matrix representation of the Green's function can be made as weak as possible. Several numerical results are demonstrated to validate the formulation developed in this paper. Finally, the duality principle of the layered medium Green's function is discussed in the appendix to make the formulation succinct. © 1963-2012 IEEE.published_or_final_versio

    A novel implementation of discrete complex image method for layered medium Green's function

    Get PDF
    A novel implementation of discrete complex image method (DCIM) based on the Sommmerfeld branch cut is proposed to accurately capture the far-field behavior of the layered medium Green's function as a complement to the traditional DCIM. By contour deformation, the Green's function can be naturally decomposed into branch-cut integration (radiation modes) and pole contributions (guided modes). For branch-cut integration, matrix pencil method is applied, and the alternative Sommerfeld identity in terms of k z integration is utilized to get a closed-form solution. The guided modes are accounted for with a pole-searching algorithm. Both one-branch-cut and two-branch-cut cases are studied. Several numerical results are presented to validate this method. © 2011 IEEE.published_or_final_versio

    A new closed-form evaluation of layered medium Green'S function

    Get PDF
    A new closed-form evaluation of layered medium Green's function is proposed in this paper. The discrete complex image method (DCIM) is extended to sampling along the Sommerfeld branch cut, to capture the far field interaction. Contour deformation technique is applied to decompose the Green's function into radiation modes (branch cut integration) and guided modes (surface-wave poles). The matrix pencil method is implemented to get a closed-form solution, with the help of an alternative Sommerfeld identity. Numerical results are presented to demonstrate the accuracy of this method. © 2011 IEEE.published_or_final_versionThe 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), Spokane, WA., 3-8 July 2011. In IEEE Antennas and Propagation Society. International Symposium, 2011, p. 3211-321

    First Principles Study on the Electronic Structure and Interface Stability of Hybrid Silicene/Fluorosilicene Nanoribbons

    Full text link
    © 2015 Macmillan Publishers Limited. The interface stability of hybrid silicene/fluorosilicene nanoribbons (SFNRs) has been investigated by using density functional theory calculations, where fluorosilicene is the fully fluorinated silicene. It is found that the diffusion of F atoms at the zigzag and armchair interfaces of SFNRs is endothermic, and the corresponding minimum energy barriers are respectively 1.66 and 1.56 eV, which are remarkably higher than the minimum diffusion energy barrier of one F atom and two F atoms on pristine silicene 1.00 and 1.29 eV, respectively. Therefore, the thermal stability of SFNRs can be significantly enhanced by increasing the F diffusion barriers through silicene/fluorosilicene interface engineering. In addition, the electronic and magnetic properties of SFNRs are also investigated. It is found that the armchair SFNRs are nonmagnetic semiconductors, and the band gap of armchair SFNRs presents oscillatory behavior when the width of silicene part changing. For the zigzag SFNRs, the antiferromagnetic semiconducting state is the most stable one. This work provides fundamental insights for the applications of SFNRs in electronic devices

    Modeling electrically small structures in layered medium with augmented EFIE method

    Get PDF
    Electrically small structures embedded in a planarly layered medium are modeled by the augmented electric field integral equation (EFIE) method in this paper. By separating charge as extra unknown list, and enforcing the current continuity equation, an augmented EFIE (A-EFIE) can be setup. The matrix-friendly formulation of layered medium Green's function is applied and the frequency scaling of the impedance matrix in the moment method is analyzed when the frequency tends to zero. Rank deficiency and the charge neutrality enforcement is also discussed in detail. Numerical results show that the low frequency breakdown of electrically small structures embedded in a layered medium can be effectively remedied by this A-EFIE method. © 2011 IEEE.published_or_final_versionThe 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), Spokane, WA., 3-8 July 2011. In IEEE APSURSI Digest, 2011, p. 3218-322

    An augmented electric field integral equation for layered medium Green's function

    Get PDF
    This paper proposes an augmented electric field integral equation (A-EFIE) for layered medium Green's function. The newly developed matrix-friendly formulation of layered medium Green's function is applied in this method. By separating charge as extra unknown list, and enforcing the current continuity equation, the traditional EFIE can be cast into a generalized saddle-point system. Frequency scaling for the matrix-friendly formulation is analyzed when frequency tends to zero. Rank deficiency and the charge neutrality enforcement of the A-EFIE for layered medium Green's function is discussed in detail. The electrostatic limit of the A-EFIE is also analyzed. Without any topological loop-searching algorithm, electrically small conducting structures embedded in a general layered medium can be simulated by using this new A-EFIE formulation. Several numerical results are presented to validate this method at the end of this paper. © 2010 IEEE.published_or_final_versio

    Density functional theory study on the electronic properties and stability of silicene/silicane nanoribbons

    Full text link
    © The Royal Society of Chemistry 2015. The thermal stability of silicene/silicane nanoribbons (SSNRs) has been investigated by using density functional theory calculations, where silicane is the fully hydrogenated silicene. It was found that the minimum energy barriers for the diffusion of hydrogen atoms at the zigzag and armchair interfaces of SSNRs are 1.54 and 1.47 eV, respectively, while the diffusion of H atoms at both interfaces is always endothermic. Meanwhile, the minimum diffusion energy barriers of one H atom and two H atoms on pristine silicene are 0.73 and 0.87 eV, respectively. Therefore, the thermal stability of SSNRs can be significantly enhanced by increasing the hydrogen diffusion barriers through silicene/silicane interface engineering. In addition, the zigzag SSNR remains metallic, whereas the armchair SSNR is semiconducting. However, the silicene nanoribbons part-determine the metallic or semiconducting behaviour in the SSNRs. This work provides fundamental insights for the applications of SSNRs in electronic devices. This journal i

    Study on spontaneous emission in complex multilayered plasmonic system via surface integral equation approach with layered medium Green's function

    Get PDF
    A rigorous surface integral equation approach is proposed to study the spontaneous emission of a quantum emitter embedded in a multi-layered plasmonic structure with the presence of arbitrarily shaped metallic nanoscatterers. With the aid of the Fermi's golden rule, the spontaneous emission of the emitter can be calculated from the local density of states, which can be further expressed by the imaginary part of the dyadic Green's function of the whole electromagnetic system. To obtain this Green's function numerically, a surface integral equation is established taking into account the scattering from the metallic nanoscatterers. Particularly, the modeling of the planar multilayered structure is simplified by applying the layered medium Green's function to reduce the computational domain and hence the memory requirement. Regarding the evaluation of Sommerfeld integrals in the layered medium Green's function, the discrete complex image method is adopted to accelerate the evaluation process. This work offers an accurate and efficient simulation tool for analyzing complex multilayered plasmonic system, which is commonly encountered in the design of optical elements and devices. © 2012 Optical Society of America.published_or_final_versio

    Shear Modulus of a Carbonate Sand–Silt Mixture with THF Hydrate

    Get PDF
    The maximum shear modulus (Gmax) is an important factor determining soil deformation, and it is closely related to engineering safety and seafloor stability. In this study, a series of bender element tests was carried out to investigate the Gmax of a hydrate-bearing carbonate sand (CS)–silt mixture. The soil mixture adopted a CS:silt ratio of 1:4 by weight to mimic the fine-grained deposit of the South China Sea (SCS). Tetrahydrofuran (THF) was used to form the hydrate. Special specimen preparation procedures were adopted to form THF hydrate inside the intraparticle voids of the CS. The test results indicate that hydrate contributed to a significant part of the skeletal stiffness of the hydrate-bearing CS–silt mixture, and its Gmax at 5% hydrate saturation (Sh) was 4–6 times that of the host soil mixture. Such stiffness enhancement at a low Sh may be related to the cementation hydrate morphology. However, the Gmax of the hydrate-bearing CS–silt mixture was also sensitive to the effective stress for an Sh ranging between 5% and 31%, implying that the frame-supporting hydrate morphology also plays a key role in the skeletal stiffness of the soil mixture. Neither the existing cementation models nor the theoretical frame-supporting (i.e., Biot–Gassmann theory by Lee (BGTL)), could alone provide a satisfactory prediction of the test results. Thus, further theoretical study involving a combination of cementation and frame-supporting models is essential to understand the effects of complicated hydrate morphologies on the stiffness of soil with a substantial amount of intraparticle voids
    • …
    corecore