757 research outputs found

    How volatilities nonlocal in time affect the price dynamics in complex financial systems

    Full text link
    What is the dominating mechanism of the price dynamics in financial systems is of great interest to scientists. The problem whether and how volatilities affect the price movement draws much attention. Although many efforts have been made, it remains challenging. Physicists usually apply the concepts and methods in statistical physics, such as temporal correlation functions, to study financial dynamics. However, the usual volatility-return correlation function, which is local in time, typically fluctuates around zero. Here we construct dynamic observables nonlocal in time to explore the volatility-return correlation, based on the empirical data of hundreds of individual stocks and 25 stock market indices in different countries. Strikingly, the correlation is discovered to be non-zero, with an amplitude of a few percent and a duration of over two weeks. This result provides compelling evidence that past volatilities nonlocal in time affect future returns. Further, we introduce an agent-based model with a novel mechanism, that is, the asymmetric trading preference in volatile and stable markets, to understand the microscopic origin of the volatility-return correlation nonlocal in time.Comment: 16 pages, 7 figure

    Word Embedding based Correlation Model for Question/Answer Matching

    Full text link
    With the development of community based question answering (Q&A) services, a large scale of Q&A archives have been accumulated and are an important information and knowledge resource on the web. Question and answer matching has been attached much importance to for its ability to reuse knowledge stored in these systems: it can be useful in enhancing user experience with recurrent questions. In this paper, we try to improve the matching accuracy by overcoming the lexical gap between question and answer pairs. A Word Embedding based Correlation (WEC) model is proposed by integrating advantages of both the translation model and word embedding, given a random pair of words, WEC can score their co-occurrence probability in Q&A pairs and it can also leverage the continuity and smoothness of continuous space word representation to deal with new pairs of words that are rare in the training parallel text. An experimental study on Yahoo! Answers dataset and Baidu Zhidao dataset shows this new method's promising potential.Comment: 8 pages, 2 figure

    Scaling in directed dynamical small-world networks with random responses

    Full text link
    A dynamical model of small-world network, with directed links which describe various correlations in social and natural phenomena, is presented. Random responses of every site to the imput message are introduced to simulate real systems. The interplay of these ingredients results in collective dynamical evolution of a spin-like variable S(t) of the whole network. In the present model, global average spreading length \langel L >_s and average spreading time _s are found to scale as p^-\alpha ln N with different exponents. Meanwhile, S behaves in a duple scaling form for N>>N^*: S ~ f(p^-\beta q^\gamma t'_sc), where p and q are rewiring and external parameters, \alpha, \beta, \gamma and f(t'_sc) are scaling exponents and universal functions, respectively. Possible applications of the model are discussed.Comment: 4 pages, 6 Figure

    Fabrication and Characterization of Al/NiO Energetic Nanomultilayers

    Get PDF
    The redox reaction between Al and metallic oxide has its advantage compared with intermetallic reaction and Al/NiO nanomutlilayers are a promising candidate for enhancing the performance of energetic igniter. Al/NiO nanomutlilayers with different modulation periods are prepared on alumina substrate by direct current (DC) magnetron sputtering. The thicknesses of each period are 250 nm, 500 nm, 750 nm, 1000 nm, and 1500 nm, respectively, and the total thickness is 3 μm. The X-ray diffraction (XRD) and scanning electron microscope (SEM) results of the as-deposited Al/NiO nanomutlilayers show that the NiO films are amorphous and the layered structures are clearly distinguished. The X-ray photoelectron spectroscopy (XPS) demonstrates that the thickness of Al2O3 increases on the side of Al monolayer after annealing at 450°C. The thermal diffusion time becomes greater significantly as the amount of thermal boundary conductance across the interfaces increases with relatively smaller modulation period. Differential scanning calorimeter (DSC) curve suggests that the energy release per unit mass is below the theoretical heat of the reaction due to the nonstoichiometric ratio between Al and NiO and the presence of impurities
    • …
    corecore