1,233 research outputs found

    Parallel-Jaw Gripper and Grasp Co-Optimization for Sets of Planar Objects

    Full text link
    We propose a framework for optimizing a planar parallel-jaw gripper for use with multiple objects. While optimizing general-purpose grippers and contact locations for grasps are both well studied, co-optimizing grasps and the gripper geometry to execute them receives less attention. As such, our framework synthesizes grippers optimized to stably grasp sets of polygonal objects. Given a fixed number of contacts and their assignments to object faces and gripper jaws, our framework optimizes contact locations along these faces, gripper pose for each grasp, and gripper shape. Our key insights are to pose shape and contact constraints in frames fixed to the gripper jaws, and to leverage the linearity of constraints in our grasp stability and gripper shape models via an augmented Lagrangian formulation. Together, these enable a tractable nonlinear program implementation. We apply our method to several examples. The first illustrative problem shows the discovery of a geometrically simple solution where possible. In another, space is constrained, forcing multiple objects to be contacted by the same features as each other. Finally a toolset-grasping example shows that our framework applies to complex, real-world objects. We provide a physical experiment of the toolset grasps.Comment: 2023 IEEE IROS conferenc

    Icehouse–Greenhouse Variations in Marine Denitrification

    Get PDF
    Long-term secular variation in the isotopic composition of seawater fixed nitrogen (N) is poorly known. Here, we document variation in the N-isotopic composition of marine sediments (δ15Nsed) since 660 Ma (million years ago) in order to understand major changes in the marine N cycle through time and their relationship to first-order climate variation. During the Phanerozoic, greenhouse climate modes were characterized by low δ15Nsed (∼−2 to +2‰) and icehouse climate modes by high δ15Nsed (∼+4 to +8‰). Shifts toward higher δ15Nsed occurred rapidly during the early stages of icehouse modes, prior to the development of major continental glaciation, suggesting a potentially important role for the marine N cycle in long-term climate change. Reservoir box modeling of the marine N cycle demonstrates that secular variation in δ15Nsed was likely due to changes in the dominant locus of denitrification, with a shift in favor of sedimentary denitrification during greenhouse modes owing to higher eustatic (global sea-level) elevations and greater on-shelf burial of organic matter, and a shift in favor of water-column denitrification during icehouse modes owing to lower eustatic elevations, enhanced organic carbon sinking fluxes, and expanded oceanic oxygen-minimum zones. The results of this study provide new insights into operation of the marine N cycle, its relationship to the global carbon cycle, and its potential role in modulating climate change at multimillion-year timescales

    AI-based dimensional neuroimaging system for characterizing heterogeneity in brain structure and function in major depressive disorder:COORDINATE-MDD consortium design and rationale

    Get PDF
    BACKGROUND: Efforts to develop neuroimaging-based biomarkers in major depressive disorder (MDD), at the individual level, have been limited to date. As diagnostic criteria are currently symptom-based, MDD is conceptualized as a disorder rather than a disease with a known etiology; further, neural measures are often confounded by medication status and heterogeneous symptom states. METHODS: We describe a consortium to quantify neuroanatomical and neurofunctional heterogeneity via the dimensions of novel multivariate coordinate system (COORDINATE-MDD). Utilizing imaging harmonization and machine learning methods in a large cohort of medication-free, deeply phenotyped MDD participants, patterns of brain alteration are defined in replicable and neurobiologically-based dimensions and offer the potential to predict treatment response at the individual level. International datasets are being shared from multi-ethnic community populations, first episode and recurrent MDD, which are medication-free, in a current depressive episode with prospective longitudinal treatment outcomes and in remission. Neuroimaging data consist of de-identified, individual, structural MRI and resting-state functional MRI with additional positron emission tomography (PET) data at specific sites. State-of-the-art analytic methods include automated image processing for extraction of anatomical and functional imaging variables, statistical harmonization of imaging variables to account for site and scanner variations, and semi-supervised machine learning methods that identify dominant patterns associated with MDD from neural structure and function in healthy participants. RESULTS: We are applying an iterative process by defining the neural dimensions that characterise deeply phenotyped samples and then testing the dimensions in novel samples to assess specificity and reliability. Crucially, we aim to use machine learning methods to identify novel predictors of treatment response based on prospective longitudinal treatment outcome data, and we can externally validate the dimensions in fully independent sites. CONCLUSION: We describe the consortium, imaging protocols and analytics using preliminary results. Our findings thus far demonstrate how datasets across many sites can be harmonized and constructively pooled to enable execution of this large-scale project

    Knowledge network modelling to support decision-making for strategic intervention in IT project-oriented change management

    Get PDF
    This is the Accepted Manuscript version of an article published by Taylor & Francis in Journal of Decision Systems on 20 March 2014, available online: http://www.tandfonline.com/doi/abs/10.1080/12460125.2014.886499.This paper focuses on knowledge management to enhance decision support systems for strategic intervention in information technology (IT) project-oriented change management. It proposes a model of change management knowledge networks (CMKNM) to support decision by tackling three existing issues: insufficient knowledge traceability based on the relationships between knowledge elements and key factors, lack of procedural knowledge to provide adequate policies to guide changes, and lack of ‘lessons learned’ documentation in knowledge bases. A qualitative method was used to investigate issues surrounding knowledge mobilisation and knowledge networks. Empirical study was undertaken with industries to test the CMKNM. Results are presented from the empirical study on the key factors influencing knowledge mobilisation in IT project-oriented change management, knowledge networks and connections. The CMKNM model allows key knowledge mobilisation factors to be aligned with each other; it also defines the connections between knowledge networks allowing knowledge to be mobilised by tracing knowledge channels to support decision.Peer reviewe

    Predicted risks of radiogenic cardiac toxicity in two pediatric patients undergoing photon or proton radiotherapy

    Get PDF
    BACKGROUND: Hodgkin disease (HD) and medulloblastoma (MB) are common malignancies found in children and young adults, and radiotherapy is part of the standard treatment. It was reported that these patients who received radiation therapy have an increased risk of cardiovascular late effects. We compared the predicted risk of developing radiogenic cardiac toxicity after photon versus proton radiotherapies for a pediatric patient with HD and a pediatric patient with MB. METHODS: In the treatment plans, each patient’s heart was contoured in fine detail, including substructures of the pericardium and myocardium. Risk calculations took into account both therapeutic and stray radiation doses. We calculated the relative risk (RR) of cardiac toxicity using a linear risk model and the normal tissue complication probability (NTCP) values using relative seriality and Lyman models. Uncertainty analyses were also performed. RESULTS: The RR values of cardiac toxicity for the HD patient were 7.27 (proton) and 8.37 (photon), respectively; the RR values for the MB patient were 1.28 (proton) and 8.39 (photon), respectively. The predicted NTCP values for the HD patient were 2.17% (proton) and 2.67% (photon) for the myocardium, and were 2.11% (proton) and 1.92% (photon) for the whole heart. The predicted ratios of NTCP values (proton/photon) for the MB patient were much less than unity. Uncertainty analyses revealed that the predicted ratio of risk between proton and photon therapies was sensitive to uncertainties in the NTCP model parameters and the mean radiation weighting factor for neutrons, but was not sensitive to heart structure contours. The qualitative findings of the study were not sensitive to uncertainties in these factors. CONCLUSIONS: We conclude that proton and photon radiotherapies confer similar predicted risks of cardiac toxicity for the HD patient in this study, and that proton therapy reduced the predicted risk for the MB patient in this study

    Epigenetic and integrative cross-omics analyses of cerebral white matter hyperintensities on MRI

    Get PDF
    Cerebral white matter hyperintensities on MRI are markers of cerebral small vessel disease, a major risk factor for dementia and stroke. Despite the successful identification of multiple genetic variants associated with this highly heritable condition, its genetic architecture remains incompletely understood. More specifically, the role of DNA methylation has received little attention. We investigated the association between white matter hyperintensity burden and DNA methylation in blood at approximately 450,000 CpG sites in 9,732 middle-aged to older adults from 14 community-based studies. Single-CpG and region-based association analyses were carried out. Functional annotation and integrative cross-omics analyses were performed to identify novel genes underlying the relationship between DNA methylation and white matter hyperintensities. We identified 12 single-CpG and 46 region-based DNA methylation associations with white matter hyperintensity burden. Our top discovery single CpG, cg24202936 (P = 7.6 × 10-8), was associated with F2 expression in blood (P = 6.4 × 10-5), and colocalized with FOLH1 expression in brain (posterior probability =0.75). Our top differentially methylated regions were in PRMT1 and in CCDC144NL-AS1, which were also represented in single-CpG associations (cg17417856 and cg06809326, respectively). Through Mendelian randomization analyses cg06809326 was putatively associated with white matter hyperintensity burden (P = 0.03) and expression of CCDC144NL-AS1 possibly mediated this association. Differentially methylated region analysis, joint epigenetic association analysis, and multi-omics colocalization analysis consistently identified a role of DNA methylation near SH3PXD2A, a locus previously identified in genome-wide association studies of white matter hyperintensities. Gene set enrichment analyses revealed functions of the identified DNA methylation loci in the blood-brain barrier and in the immune response. Integrative cross-omics analysis identified 19 key regulatory genes in two networks related to extracellular matrix organization, and lipid and lipoprotein metabolism. A drug repositioning analysis indicated antihyperlipidemic agents, more specifically peroxisome proliferator-activated receptor alpha, as possible target drugs for white matter hyperintensities. Our epigenome-wide association study and integrative cross-omics analyses implicate novel genes influencing white matter hyperintensity burden, which converged on pathways related to the immune response and to a compromised blood brain barrier possibly due to disrupted cell-cell and cell-extracellular matrix interactions. The results also suggest that antihyperlipidemic therapy may contribute to lowering risk for white matter hyperintensities possibly through protection against blood brain barrier disruption
    corecore