13,649 research outputs found

    Asymmetric Deep Supervised Hashing

    Full text link
    Hashing has been widely used for large-scale approximate nearest neighbor search because of its storage and search efficiency. Recent work has found that deep supervised hashing can significantly outperform non-deep supervised hashing in many applications. However, most existing deep supervised hashing methods adopt a symmetric strategy to learn one deep hash function for both query points and database (retrieval) points. The training of these symmetric deep supervised hashing methods is typically time-consuming, which makes them hard to effectively utilize the supervised information for cases with large-scale database. In this paper, we propose a novel deep supervised hashing method, called asymmetric deep supervised hashing (ADSH), for large-scale nearest neighbor search. ADSH treats the query points and database points in an asymmetric way. More specifically, ADSH learns a deep hash function only for query points, while the hash codes for database points are directly learned. The training of ADSH is much more efficient than that of traditional symmetric deep supervised hashing methods. Experiments show that ADSH can achieve state-of-the-art performance in real applications

    Generalized Debye Sources Based EFIE Solver on Subdivision Surfaces

    Get PDF
    The electric field integral equation is a well known workhorse for obtaining fields scattered by a perfect electric conducting (PEC) object. As a result, the nuances and challenges of solving this equation have been examined for a while. Two recent papers motivate the effort presented in this paper. Unlike traditional work that uses equivalent currents defined on surfaces, recent research proposes a technique that results in well conditioned systems by employing generalized Debye sources (GDS) as unknowns. In a complementary effort, some of us developed a method that exploits the same representation for both the geometry (subdivision surface representations) and functions defined on the geometry, also known as isogeometric analysis (IGA). The challenge in generalizing GDS method to a discretized geometry is the complexity of the intermediate operators. However, thanks to our earlier work on subdivision surfaces, the additional smoothness of geometric representation permits discretizing these intermediate operations. In this paper, we employ both ideas to present a well conditioned GDS-EFIE. Here, the intermediate surface Laplacian is well discretized by using subdivision basis. Likewise, using subdivision basis to represent the sources, results in an efficient and accurate IGA framework. Numerous results are presented to demonstrate the efficacy of the approach

    Magneto-Electric Dipole Antenna Arrays

    Get PDF
    A planar magneto-electric (ME) dipole antenna array is proposed and demonstrated by both full-wave analysis and experiments. The proposed structure leverages the infinite wavelength propagation characteristic of composite right/left-handed (CRLH) transmission lines to form high-gain magnetic radiators combined with radial conventional electric radiators, where the overall structure is excited by a single differential feed. The traveling-wave type nature of the proposed ME-dipole antenna enables the formation of directive arrays with high-gain characteristics and scanning capability. Peak gains of 10.84 dB and 5.73 dB are demonstrated for the electric dipole and magnetic-dipole radiation components, respectively.Comment: 9 pages, 17 figure

    Unveiling Magnetic Dipole Radiation in Phase-Reversal Leaky-Wave Antennas

    Get PDF
    The radiation principle of travelling-wave type phase-reversal antennas is explained in details, unveiling the presence of magnetic-dipole radiation in addition to well-known electric dipole radiation. It is point out that such magnetic dipole radiation is specific to the case of traveling-wave phase-reversal antennas whereas only electric-dipole radiation exists in resonant-type phase-reversal antennas. It is shown that a phase-reversal travelling-wave antenna alternately operates as an array of magnetic dipoles and an array of electric-dipoles during a time-harmonic period. This radiation mechanism is confirmed through both full-wave and experimental results.Comment: 4 pages, 3 figure

    Microwave millisecond spike emission and its associated phenomena during the impulsive phase of large flares

    Get PDF
    A tentative model is proposed to account for some features of the microwave millisecond spike emission and its links with the physical processes of associated phenomena during the impulsive phase of large flares by comparing the optical, radio, and X-ray observations on May 16, 1981 to those on October 12, 1981
    • …
    corecore