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ABSTRACT

A tentative model is proposed to account for some features of the miczowave

millisecond spike emission and its links with the physical processes of associated

phenomena during the impulsive phase of large flares by conparing the optical,

radio and X-ray observations on May 16, 1981 to those on October 12, 1981.

I. INTRODUCTION

The emission of short duration (i-i00 ms), high brightness temperature

(7_.i0t5 K) spikes at microwave frequencies during the impulsive phase of some solar

flares is now well established [i, 2]. The occurrences of these spikes may give us a

clue to the physical process of microwave millisecond spike emission(MMSE) linked

with its associated phenomena.

On the basis of the observations described in [i], Melrose and Dulk (1982)

discussed the relation between the physical processes generating MMSE and hard X-ray
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bursts. They suggested that MM_E was caused by the loss-cone driven electron-cyclo-

tron maser in a flaring loop [3]. In this paper, %_ go further to find the physical

processes of the MMSE and its links with associated phenomena druing the impulsive

phase of some solar flares, but the MMSE is considered to be excited by the electron-

cyclorton instability associated with a hollow beam of electrons [4].

We have analysed two major flare-burst events of May 16 and October 12, 1981.

The following observational data during the impulsive phase of these two flares were

used for comparison.

(i) Radio observations made at 2.84 GHz with the time resolutions of 1 second

and 1 ms at the Beijing Cbservatory,

(2) H_ and photospheric magnetic field observations made at the Yunnan

Observatory,

(3)Hard X-ray burst observations made on Hinotori (by courtesy of Dr.K.Tanaka)

(4) Radio spectra for type III and type IVD_zM bursts published in Solar-

Geophysical Data.

All the data staed above are stmmarized in Table i.

II. A GENERAL DESCRIPTION OF THE T_D FLARE-BURST EVENTS

As shown by Table i, there existed some similar features between these two

events, such as the coincidence with H_ flares of inlDortance 3B, two-ribbon flares,

magnetic configurations of type _ and photospheric magnetic intensities _2500G.

However, we can see in the following their significant characteristics different

from each other.

i. There appeared strong MMSE's (Tb _ i0 I_" K) during the first event (1981 May

19 ) but appear during the second (1981 October 12 ).

2. A lot of intense decimetric bursts of type IIIs , type III_ and type IV_z M

occurred during the first event, but no decimetric burst and only weak metric bursts

occurred during the second.

3. Although only the decay phase of hard X-ray bursts was recorded on Hinotori

for the first event, the peak values (counts per second) of hard X-ray bursts for

the first event still far exceeded those of the second in the same energy range.

4. However, the peak flux density of radio burst at i0.6 an in the second
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event is about six times larger than that in the first.

III. THE MDDEL AND KEY PROCESSES

It has been pointed out in [2,6] that after the main phase of the microwave

burst there still appeared MMSE's. This means that the fast electrons generating

the microwave bursts and those exciting MMSE's do not come from the same source.

Furthermore, the simultaneous observations of hard X-ray bursts by SMM and high

resolution microwave observations by ViA indicate that the sources of these two

bursts are mot ooincident with each other in _pace.

On the basis of these observations and a comparison between the two flare-burst

events stated above, _ propose a tentative model to account for the links of the

physical processes of MMSE's with their associated phencmena as follows (Fig. i. ).

i. During the impulsive phase of large solar flares, there probably appear two

acceleration regions, One (region A) of them formed in the current sheet by a tear-

ing mode instability is located over the top of the flaring loop, the other (region

B) is established just at the top of the flaring loop by turbulence acceleration.

Regions A and B are also the energy release regions.

2. A stream of fast electrons escaping outward from region A along open field

lines is able to excite type III bursts with a negative frequency drift under

certain conditions, while the other stream injected downward with a certain incident

angle into the flaring loop is capable of establishing an anisotropic pitch angle

distribution of "hollow beam" and stimulate an electron-cyclotron maser to radiate

MMSE's or generate type IVp¢_M bursts with positive frequency drift. As soon as the

fast electrons radiate away energy in the direction perpendicular to the magnetic

field, they immediately precipitate into the transition region or the chromosphere,

collide with the surrounding plasma and emit hard X-ray bursts (thick target model).

3. The background radiation, i.e. microwave radio bursts superimposed by

MMSE's, is generally accepted as a gyrosynchrotron radiation emitted by nonthermal

electrons, gyrating about field lines, with an isotopic pitch angle distribution

and power law energy spectrun. The microwave burst source is located in region B at

the top of the flaring loop.
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Fig. i. The large microwave burst at _ = 10.6 an

and hard X-ray bursts recorded by Prognoz 8

satellite during the large flare-burst event

of 1981 May 16 [5].

I

IV. EXPLANATION AND DISCUSSION

I. According to a quasilinear theory, the general formula for the growth rate

at s-th harmonic for wave in the magneto-ionic mode is [3, Appendix B]
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Fig. 2 A model of MMSE and associated phenomena

68
where p = (p_ + p._ )_ : rmv is the electron's momentum, 6_)8=-_-_ is the electron-

cyclotron frequency, and _ and I/ denote components of wave number and velovity to

the direction of the magnetic field B, p, = pcos_, p_ = psin_ , and_ is the pitch

angle, r is the Lorentz factor.

of

It can be shown [8] that the sign of the integrand is determined by the sign

suO_ ix)

Positive contributions to Df favour the growth and negative contributions favour

the damping of the waves.
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Suppose that the distrioution function of nonthermal electrons with an isotro-

pic pitch angle and power law energy spectrum for gyro-synchrotron radiation can be

written as in [9, i0]

here G is a constant and g is the spectral index, gin0. one obtains _<o , so that

_(r)< 0. Therefore, the distribution function of fast electrons in expression (3)

is capable of producing gyrosynchrotron radiation of microwave bursts [9, i0] but

it can not amplify the s-th harmonic waves and generate MM_E's.

Just on the contrary, the "hollow beam' distribution of fast electrons favours

the growth of waves and leads to the generation of MMSE's [4].

2. The distribution of the pitch angles of the electrons injected from Region

A to Region B on top of the magnetic arch is determined by the distance D between A

and B. If D is sufficiently large, then the distribution is isotropic; otherwise,

it will be anisotropic. This is because, the large the D, the greater will be the

diffusion of the electrons; the smaller the D, the more restricted will be the angle

of injection of the electron beams.

Table 1 shows that, for the event of May 16, the Type III bursts began in the

decimetric wave range (aroung 60 cm, corresponding to a plasma frequency of 500 MHz,

and a height of 23 xl0_km above the photosphere, see below). For the Oct. 12 event,

they began in the meter wave bands (e.g., 2 m, corresponding plasma frequency

150 MHz and height 2.3 x 105 km above photosphere). Since both events have the same

type photospheric magnetic field with strengths _ 2500 G, for both then, we may

regard the microwave (10.6 cm) burst source in Region B at the top of the magnetic

arch during the impulsive phase of the flare to have about the same size (or i0// ).

It then follows that the angle of the cone subtended by the electron beams issuing

from Region A (the height corresponding to the starting frequency of the Type III

burst) must greater than 24020 ' for the earlier event in order to achieve isotropic

distribution, and need only 1°58 ' for the later event. Clearly it is easy to a beam

ejected at A to be diffused through the collision with the background particls into

a cone as small as 1° 58' when reaching B. Thus, for the later event, of October 12,

the electron beams injected from A into B had an isotropic distribution of pitch
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angle and so could not generate any spike emission or intense x-ray bursts. But

such isotropic beams would add to the isotropic electrons in Region B and greatly

increase the gyro-synchrotron radiation, hence the n_Dre intense at 10.6 cm.

For the earlier event of May 16, the Type III burst was strong, its starting

frequency was high, the generating electrons bad high energies, the downward

injected bear,%ras energetic and difficult to disperse, making the incident cone far

below the value of 20°20 ' required for isotropization. The bea_, then, was a

"hollow-beam" and so generated intense spike endssion and also led to strong bursts

in hard X-ray. According to the radio dynamic spectrum measured at Dwingloo 5,

during the inpulsive phase, this event (May 16), at about 0814.5 UT, a Type III

burst with a negative frequency drift appeared in 300-380 MHz, and at sa_e time,

one with a positive drift appeared in 509-666 MHz. This observed fact shows

certainly that Region A in the neutral current sheet can simultaneously eject both

one upward (towards the outer corona) and an inward (toward the coronal base)

electron bean_. It was estimated that the electron density in this acceleration

region was about 3xl0_km above the photospere.

3. Type III_ bursts are the type III bursts (_ i0) appearing in groups. In

the event of 1981 May 16, the M_E's recorded at wavelength 10.6 cm often happended

in a group-like type III_ burst. Since the radiating electrons of type III_ bursts

and _E's escape from the same acceleration process. Probably, the duration of

each group of _4SE's corresponds to that of each subburst in type III burst. The

switch-off structure of MMSE's in [2] corresponds to the interval between t_

subbursts and the switch-on structure manifests the start of a group of F_4SE's due

to the injected electrons with a "hollow beam" distribution.

As can be seen in Table i, an intense type-III burst appears from 0810 to

0816.2UT. It might be in correspondence with the significant switch-off and switch-

on structures of _4SE's at about 0815UT during the rising phase in micro-

wave burst (at 10.6 cm) of May 16, 1981.

About 0814.5UT in the band 300-480 F_z, type III bursts with negative fre-

quency drifts of about 100MHz/sec were observed with Dwingloo radio-spectrograph,

while at the higher frequencies 509-666 _ positive drifting bursts about

+ 50 MHz/sec occurred [5]. This is a strong evidence indicating the sin_itaneous

acceleration of electrons upwards and downwards. The electron density in the

acceleration region was estimated to be 3 x i0 9 cTn.3 and the corresponding
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height about 2.3 x 104 Km.

5. Becausethe radiating electrons of hard X-ray bursts and type III bursts

comefrom the sameacceleration region A, the key problem is whether these electrons

possess enough energy to radiate _E's and hard X-ray bursts. We should answer this

question by evaluating the energy of these nonthermal electrons which may produce

type III bursts.

Type III bursts present a rapid drift from high to low frequencies at a rate

described in [II].

Generally speaking, Type III emission is ascribed to the scattering of

Cerenkov plasma waves produced by fast electron streams. It is believed that most

type III bursts are observed at the second harmonic of the local plasma frequency

cD

where R(t) represents the position of type III burst source at instant t. N(R) is

the local electron density in cm -3 .

From equation (7), the drift rate in frequency can be expressed as

 o4: .e (6)

./N

where _ is the gradient of coronal electron density and _-v is the velocity

vector of the fast electron stream. If e is the angle between_ and v, and 6 the

angle between the line of sight and the direction of the electron stream, then for

a relativistic electron stream and because of Doppler effect and _< i, we can
l

obtain approximately fv =-/S/d_. From Equation (6), the rat io_=_ can be
l-

given by
a.
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and

For simplicity, we assume that the electron density of the corona is in

spherically symmetric distribution and the fast electron streams move outward along

the radial direction.

When 8=_ = O, _ have

The energy of the fast electrons producing type III bursts is given by

Moreover, _e use the model of N(R) for solar maximum activity fiven by Table 2 of

referenoe [12]. Finally, the kinetic energy of fast electrons producing type III

bursts for different frequencies is shown in Table 2.

If _ and _ are not equal to zero, the value of_(_,_) evaluated from equa-

tion(7) n_st be larger than that from equation (9) with the same frequency. Hence

the energy of fast electrons increases. Therefore, as long as the fast electrons

injected downward from acceleratiom region A possess the same energy as those

exciting type III bursts, they are still abl_ to produce hard X-ray bursts as those

recorded on "Hinotori" or on Prognoz 8 satellite even after losing some energy

about tens of kev due to MMSE's.

Table 2. Energy of fast electrons producing type

III bursts at different frequencies

i _ i =,

f(_z ) 600 300 200

_ (KEY) 11.24 69 34

V. CONCLUDING WORDS

Based on our model and the mechanism of electron-cyclotron instability
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associated with a hollow beam of electrons, we have explained why there occurred

strong MMSE's during the event of 1981 Fay 16 and why there appeared no MMSE but

more intene microwave bursts at 10.6 am during the event of 1981 October 12.

Furthermore, we have shown that there exist some intimate links of MMSE's with

their associated phenomena in the physical processes of generation and evolution

during the impulsive phase of large flares. Obviously, the discovery of these links

with ere another is /mportant for clarifying the mechanism of large flares.

The authors are indebted to Dr. K. Tanaka for sending us the data of hard

X-ray bursts recorded on "Hinotori" satellite and to the Yunnan Observatory for

the data of photospheric magnetic fields.
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