70 research outputs found

    Adaboost‑Based Security Level Classifcation of Mobile Intelligent Terminals

    Get PDF
    With the rapid development of Internet of Things, massive mobile intelligent terminals are ready to access edge servers for real-time data calculation and interaction. However, the risk of private data leakage follows simultaneously. As the administrator of all intelligent terminals in a region, the edge server needs to clarify the ability of the managed intelligent terminals to defend against malicious attacks. Therefore, the security level classification for mobile intelligent terminals before accessing the network is indispensable. In this paper, we firstly propose a safety assessment method to detect the weakness of mobile intelligent terminals. Secondly, we match the evaluation results to the security level. Finally, a scheme of security level classification for mobile intelligent terminals based on Adaboost algorithm is proposed. The experimental results demonstrate that compared to a baseline that statistically calculates the security level, the proposed method can complete the security level classification with lower latency and high accuracy when massive mobile intelligent terminals access the network at the same time

    Learning to Detect: A Data-driven Approach for Network Intrusion Detection

    Get PDF
    With massive data being generated daily and the ever-increasing interconnectivity of the world’s Internet infrastructures, a machine learning based intrusion detection system (IDS) has become a vital component to protect our economic and national security. In this paper, we perform a comprehensive study on NSL-KDD, a network traffic dataset, by visualizing patterns and employing different learning-based models to detect cyber attacks. Unlike previous shallow learning and deep learning models that use the single learning model approach for intrusion detection, we adopt a hierarchy strategy, in which the intrusion and normal behavior are classified firstly, and then the specific types of attacks are classified. We demonstrate the advantage of the unsupervised representation learning model in binary intrusion detection tasks. Besides, we alleviate the data imbalance problem with SVM-SMOTE oversampling technique in 4-class classification and further demonstrate the effectiveness and the drawback of the oversampling mechanism with a deep neural network as a base model. Index Terms—Intrusio

    Cache-enabled Unmanned Aerial Vehicles for Cooperative Cognitive Radio Networks

    Get PDF
    Cooperative cognitive radio network is a new method to alleviate the spectrum scarcity problem. Proactive content caching and UAV relaying techniques are deployed in a CRN, to enable the achievable rates for primary and secondary systems. Even though these two emerging technologies are grateful to solve the problem of spectrum scarcity, there are still open issues to influence the system performance and the utilization of spectrum. In this article, we provide an overview of the cooperation technique, including their theoretical schemes and the advanced performance in radio networks. Then, this article proposes a cache-enabled UAV cooperation scheme in CRN, which enhances the CRN's transmission capability and reduces the redundant traffic load of CRN. The experimental results show that the cache-enabled UAV scheme significantly improves the achievable rates for both systems in CCRN. In addition, we present future work related to content caching, deployment of UAVs and CCRN to support radio networks

    Communication Aware UAV Swarm Surveillance Based on Hierarchical Architecture

    Get PDF
    Multi-agent unmanned aerial vehicle (UAV) teaming becomes an essential part in science mission, modern warfare surveillance, and disaster rescuing. This paper proposes a decentralized UAV swarm persistent monitoring strategy in realizing continuous sensing coverage and network service. A two-layer (high altitude and low altitude) UAV teaming hierarchical structure is adopted in realizing the accurate object tracking in the area of interest (AOI). By introducing the UAV communication channel model in its path planning, both centralized and decentralized control schemes would be evaluated in the waypoint tracking simulation. The UAV swarm network service and object tracking are measured by metrics of communication link quality and waypoints tracking accuracy. UAV swarm network connectivity are evaluated over different aspects, such as stability and volatility. The comparison of proposed algorithms is presented with simulations. The result shows that the decentralized scheme outperforms the centralized scheme in the mission of persistent surveillance, especially on maintaining the stability of inner UAV swarm network while tracking moving objects

    Federated Variational Learning for Anomaly Detection in Multivariate Time Series

    Get PDF
    Anomaly detection has been a challenging task given high-dimensional multivariate time series data generated by networked sensors and actuators in Cyber-Physical Systems (CPS). Besides the highly nonlinear, complex, and dynamic nature of such time series, the lack of labeled data impedes data exploitation in a supervised manner and thus prevents an accurate detection of abnormal phenomenons. On the other hand, the collected data at the edge of the network is often privacy sensitive and large in quantity, which may hinder the centralized training at the main server. To tackle these issues, we propose an unsupervised time series anomaly detection framework in a federated fashion to continuously monitor the behaviors of interconnected devices within a network and alert for abnormal incidents so that countermeasures can be taken before undesired consequences occur. To be specific, we leave the training data distributed at the edge to learn a shared Variational Autoencoder (VAE) based on Convolutional Gated Recurrent Unit (ConvGRU) model, which jointly captures feature and temporal dependencies in the multivariate time series data for representation learning and downstream anomaly detection tasks. Experiments on three real-world networked sensor datasets illustrate the advantage of our approach over other state-of-the-art models. We also conduct extensive experiments to demonstrate the effectiveness of our detection framework under non-federated and federated settings in terms of overall performance and detection latency

    Uncertainty Theory Based Reliability-Centric Cyber-Physical System Design

    Get PDF
    Cyber-physical systems (CPSs) are built from, and depend upon, the seamless integration of software and hardware components. The most important challenge in CPS design and verification is to design CPS to be reliable in a variety of uncertainties, i.e., unanticipated and rapidly evolving environments and disturbances. The costs, delays and reliability of the designed CPS are highly dependent on software-hardware partitioning in the design. The key challenges in partitioning CPSs is that it is difficult to formalize reliability characterization in the same way as the uncertain cost and time delay. In this paper, we propose a new CPS design paradigm for reliability assurance while coping with uncertainty. To be specific, we develop an uncertain programming model for partitioning based on the uncertainty theory, to support the assured reliability. The uncertainty effect of the cost and delay time of components to be implemented can be modeled by the uncertainty variables with uncertainty distributions, and the reliability characterization is recursively derived. We convert the uncertain programming model and customize an improved heuristic to solve the converted model. Experiment results on some benchmarks and random graphs show that the uncertain method produces the design with higher reliability. Besides, in order to demonstrate the effectiveness of our model for in coping with uncertainty in design stage, we apply this uncertain framework and existing deterministic models in the design process of a sub-system that is used in real world subway control. The system implemented based on the uncertain model works better than the result of deterministic models. The proposed design paradigm has the potential to be generalized to the design of CPSs for greater assurances of safety and security under a variety of uncertainties
    • …
    corecore