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ABSTRACT A trafficmatrix is generally used by several networkmanagement tasks in a data center network,
such as traffic engineering and anomaly detection. It gives a flow-level view of the network traffic volume.
Despite the explicit importance of the traffic matrix, it is significantly difficult to implement a large-scale
measurement to build an absolute traffic matrix. Generally, the traffic matrix obtained by the operators is
imperfect, i.e., some traffic data may be lost. Hence, we focus on the problems of recovering these missing
traffic data in this paper. To recover these missing traffic data, we propose the spatio-temporal Kronecker
compressive sensing method, which draws on Kronecker compressive sensing. In our method, we account
for the spatial and temporal properties of the traffic matrix to construct a sparsifying basis that can sparsely
represent the traffic matrix. Simultaneously, we consider the low-rank property of the traffic matrix and
propose a novel recovery model. We finally assess the estimation error of the proposed method by recovering
real traffic.

INDEX TERMS Traffic matrix recovery, Kronecker compressive sensing, matrix completion, network
measurement, network management.

I. INTRODUCTION
As a crucial technique in cloud computing, the data center
network has gained much more attention. The number of
services provided by data center networks is much larger
than before. Therefore, various types of networkmanagement
functions (e.g., traffic engineering and anomaly detection)
are used in a data center network to guarantee its efficient
implementation [1]–[3]. A traffic matrix (TM) is used as a
crucial reference by various networkmanagement operations.
Initially, despite the explicit importance of TMs, it is sig-
nificantly difficult to exactly and directly measure a TM.
The expensive consumption of monitoring techniques has
triggered the development of TM estimation techniques.

The strategy of TM estimation can be defined as an inverse
inference problem, where TM is estimated via link counts
and routing information [2]–[10]. The dominant issue in
TM estimation is that the inference problem is under-
constrained. Motivated by this, numerous methodologies

have emerged to address this under-constrained feature
of TM estimation, e.g., the principal component analysis
method in [6], the tomogravity method in [7] and the route
change method in [8]. These previous methods usually refer
to a prior of the TM or a statistical model as additional infor-
mation to handle the under-constrained feature of the TMesti-
mation problem. With the advent of novel applications, the
traffic flow reveals much more complicated statistical fea-
tures. Hence, some hybrid methods have been proposed, e.g.,
the works in [9] and [10]. Considering the spatial property
of the TM, the authors in [11] propose a modified gravity
model for TM estimation. The authors in [12] focus on the
TM estimation problem in a Software Defined Network, and
propose an evolutionary approach. In [13], the authors take
into account the spatial and temporal properties of TM, and
propose a regularized optimization model for TM estimation.
Monitoring techniques can implement a direct measure-
ment for obtaining the TM. Nevertheless, the traffic data
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from direct measurement may be imperfect. The works
in [14] and [15] focus on the TM recovery problem via partial
and imperfect traffic data (i.e., the real TM measurements
may be lost).

The common reasons for imperfect traffic data are multi-
ple [14], [15]. First, flow collection devices that implement
direct measurement may fail. Second, considering the scala-
bility requirements, flow-level direct measurement may not
occur at the edge of a network, although the data from edge
nodes is significantly crucial for building a TM. Further, it is
difficult to ensure that all devices in our networks support
flow-level measurement. Hence, the traffic data that operators
obtain may be those with missing entries.

Matrix completion techniques and other interpolation algo-
rithms are popular approaches to recovering the missing traf-
fic data of a TM [14], [15]. However, the current interpolation
algorithms cannot accurately recover the entries of a traffic
matrix for a data center network due to the complicated
statistical features of traffic flows. On the one hand, a traf-
fic matrix exhibits a spatially structured low-rank property.
On the other hand, for the time domain, each origin
and destination (OD) flow pair has various statistical
properties, e.g., multifractal properties and a heavy-tailed
distribution [16]–[21]. Consequently, recovering the missing
data of the traffic matrix still is a significantly great challenge
under the existing technical conditions.

Motivated by these issues, we address the problem of
recovering a traffic matrix with missing data in this paper.
The method proposed in this paper draws from the idea of the
Kronecker Compressive Sensing (KCS) method [22]–[24].
We refer to the proposed method as the Spatio-Temporal
Kronecker Compressive Sensing method (STKCS). In our
method, we first explore a sparse representation of the
TM with respect to different dimensions. Then, according
to the proposed sparse representation of the TM, an avail-
able recovery model is built based on the KCS method.
Our contributions in this paper are as follows:
• We study the problem of network traffic recovery in
a data center network. The data center network plays
a crucial role in cloud computing. However, how to
obtain the network traffic information of a data center
network has not been given enough attention. Although
several works have considered the TM problem in a data
center network, they did not consider the noise caused by
missing data.

• We propose the STKCS method to recover the missing
data of a TM. In our method, we first consider the spatial
and temporal properties of the TM simultaneously to
find a sparse representation of it. With this representa-
tion, the problem can be solved via a convex optimiza-
tion. From the evaluation of the STKCS method, it is
deemed suitable for capturing the time-varying property
of network traffic in a data center network.

• We model the characteristics of missing traffic data in
a data center network. As far as we know, this paper
is the first to research the characteristics of missing

traffic data. Most of the existing works usually address
the problem of modeling the characteristics of traffic
flow in a data center network.

The rest of this paper is organized as follows. We briefly
introduce the background of the traffic matrix recovery prob-
lem in section 2.We then present the KCS theory in section 3.
In section 4, we propose our method. To evaluate the perfor-
mance of our approach, we provide numerical results by using
a real traffic data set in section 5. Finally, we conclude our
work in section 6.

II. PROBLEM STATEMENT
For a network with Q nodes, there are N = Q2 OD pairs.
Without loss of generality, we denote is a TM by M , and its
entries are m (n, t), n = 1, 2, . . . ,N , t = 1, 2, . . . ,L. Each
entry of the traffic matrix describes an average of network
traffic over a time interval. For instance, if the TM is mea-
sured for 5 minute slot, each entry of TM is the average of
the traffic during the 5-minute time slot. A state-of-the-art
approach to estimating such a TM is the network tomography
method, which uses link loads and the routing matrix to infer
the TM [3]–[5]. From current traffic monitoring techniques,
we can collect flow-level network traffic using direct mea-
surement of each node in our networks. Then, the traffic
data will be sent from each node to the network management
station. Nevertheless, the challenge here is that the traffic data
may be lost [14], [15]. Hence, we still cannot easily obtain
an available TM. The network management station always
receives a TM with missing entries. We denote this matrix
received by the network management station as

M ′ = A (M), (1)

where A is the operator that denotes the process of missing
data. This operator can be absolutely expressed by using the
Hadamard product

M ′ = B�M . (2)

The N × L matrix B, whose entries are 1 or 0, describes the
condition of the missing data. That is, bn,t = 0 means that
the traffic data m (n, t) is lost. Obviously, the matrix B is a
stochastic matrix because the traffic data are lost irregularly.
We here propose an available approach to estimating the
traffic matrix M via its direct measurement M ′.

III. KRONECKER COMPRESSIVE SENSING
Compressive sensing is a non-adaptive sampling technique
that is widely used in image and signal processing [22], [23].
It utilizes a stochastic matrix as the measurement matrix to
carry out sampling and compression at the same time. For
the decoding procedure, it can exactly recover the original
data from few measurements of itself. The reason that one
can precisely recover the original data is that two rigorous
conditions are held. One is that the original data must be
sparse or compressible. The other is that the measurement
matrix has to obey the restricted isometry property (RIP),
as mentioned in [22]–[24].
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The compressive sensing theory has been vastly extended,
corresponding to the practical problems that have emerged
in various research fields. The traditional compressive sens-
ing theory is usually used in signal and image processing.
Most of the literature focuses on the problems of 1-D signal
and 2-D image data. To address multidimensional data,
M. Duarte and R. Baraniuk proposed the Kronecker Com-
pressive Sensing theory [24]. It takes advantage of the
sparsity of the data in various dimensions to implement a
non-adaptive sampling. Namely, it provides a scheme for the
design of a sensing matrix for multidimensional data. Such a
sensing matrix ensures that the multidimensional data can be
sparsely represented for each dimension and obeys the RIP.

A stochastic measurement matrix is used to implement
sampling and compression tasks simultaneously, which can
be denoted as y = 8x. 8 is the stochastic measurement
matrix [22], [23]. Each row of 8 can be considered a sen-
sor [24]. The vector y is a sampling of x in terms of the
measurement matrix 8. As mentioned above, x must be
sparse or compressible, i.e., it can be denoted by a sparse
representation x = 9α. α is the coefficient vector with
respect to the sparsifying basis 9. The RIP has an explicit
unitary nature. In other words, if the measurement matrix 8
has the RIP, then the sensing matrix 2 = 89 will also
have this nature. This sampling technique is more suitable
for problems of 1-D or 2-D data. Different from the traditional
compressive sensing theory, KCS in [24] explores a sampling
scheme for multidimensional data. In the KCS theory, assume
that for a J -D data x ∈ RN1×N2×...×NJ , we define the first
dimension as a 1-section of x, namely,

x (:, n2, . . . , nJ )

= [x (1, n2, . . . , nJ ) , . . . , x (N1, n2, . . . , nJ )] , (3)

where ni = 1, 2, . . . ,Ni, i = 2, 3, . . . , J . This definition can
be extended to a j-section of x. For instance, for 3-D data
x ∈ RN1×N2×N3 , x (n1, :, n3) = [x (n1, 1, n3) , . . . ,
x (n1,N2, n3)] is the 2-section of x. The KCS theory assumes
that for the J -section of x, there are J sparse representations
of x. Their sparsifying bases are 91, 92,. . . ,9J , respectively.
In this case, the sparsifying basis of x ∈ RN1×N2×...×NJ can be
defined as9KCS = 91⊗92⊗ . . .⊗9J . Then, one can carry
out a non-adaptive sampling for x, which can be denoted by

yKCS = 8KCS9KCSαKCS . (4)

yKCS is the sampling of xKCS , and

8KCS =


81 0 · · · 0

0 82
...

...
. . . 0

0 · · · 0 8J

. (5)

9KCSαKCS is the vector-reshaped representation of x [24].
The decoding procedure for a receiving terminal is to com-
pute αKCS from its measurements yKCS . To accurately recover
the sparse data αKCS , the measurement matrix 8KCS must

obey the RIP. Because determining whether a sensing matrix
obeys the RIP is difficult, mutual coherence is involved
to provide a necessary condition for the exact recovery
of αKCS [24].

IV. SPATIO-TEMPORAL KRONECKER
COMPRESSIVE SENSING
A. SPARSE REPRESENTATION OF TRAFFIC MATRICES
TMs have a remarkable low-rank feature. Specifically,
considering the spatial properties, the volume of each traf-
fic flow exhibits a power-law property [6], [11], [12], [15].
Partial large (or crucial) traffic flows provide the main power
of the TM. In our method, we use the principal component
analysis method to probe the sparse representation of the TM.
The principal component analysis method uses singular value
decomposition as a tool to research the low-rank features of
a TM. The singular value decomposition of the transpose of
the N -by-L matrix (N < L) is defined as

MT
= U6NV T . (6)

The matrix V is an N -by-N orthogonal matrix. 6N is an
N -by-N diagonal matrix whose diagonal entries are the
singular values of the matrix M . U is an L-by-N matrix
that describes the dynamic characteristics of the matrix M .
In the principal component analysis method, one can find a
low-rank approximation of the matrix MT with K principal
components, namely,

M ≈ V6KUT
PC , (7)

where 6K is the diagonal matrix with the top K largest sin-
gular values of 6N . Subsequently, we can obtain an approx-
imately sparse representation of the matrix M , i.e., M ≈ Vs
(s = 6KUT

PC ). In this case, V and s are the orthogonal basis
and the corresponding coefficients, respectively. The missing
data cannot change the principal components of the TM in
practice, which means that the matrix M ′ can be represented
by M ′ ≈ Vs′. s′ is the coefficient matrix in terms of M ′.
We now analyze the temporal features of the TM. In the
above, we denote the missing data as M ′. Considering a
row of M ′, when the entries of the matrix M are lost, we
state that the row of the TM measurements M ′ is sparse in
the time domain. Hence, we can simply achieve a sparse
representation of the trafficmatrixmeasurementsM ′ by using
an L-by-L identity matrix IL .
We have given two sparse representations of the TM mea-

surements. As mentioned above, the two bases are V and IL
for the spatial and temporal properties, respectively. There-
fore, we can gain a sparsifying basis by using the Kronecker
product, denoted as

9 = IL ⊗ V =


V 0 · · · 0
0 V · · · 0
...

...
. . .

...

0 0 · · · V

. (8)
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In this equation, 9 is LN -by-LN . We denote the columns of
M ′ as m′t (t = 1, 2, . . . ,L). Now, we denote M ′ as a vector-
reshaped representation, namely,

P = vec(M ′) = [m′1
T
,m′2

T
, . . . ,m′L

T ]
T
. (9)

We project the LN -by-1 vector P onto LN -dimensional space
with a basis 9. In this case, the following equation holds:

P = 9S, (10)

where S is the coefficient vector with respect to the basis 9.

B. TRAFFIC MATRIX RECOVERY MODEL
In our recovery model, we denote the traffic matrix M as a
vectorization, that is,

vec(M ) = 9vec(6KUT
PC ). (11)

If we also represent Eq. 2 as a vectorization, then we have

P = vec(B)� vec(M ), (12)

where vec(B) = [bT1 , b
T
2 , . . . , b

T
L ]

T and bt is the t-th column
of B. Eq. 12 is equivalent to

P = D · vec(M ), (13)

where D is an LN -by-LN diagonal matrix whose diagonal
entries are the entries of vec(B) in turn. Combining Eq. 12
with Eq. 13, we have

P = D9vec(6KUT
PC ). (14)

For similarity, we denote vec(6KUT
PC ) as γ . Then, we

build our Spatio-Temporal Kronecker Compressive Sensing
model, as shown in Eq. 14. In this model, the sensing matrix
produced by us isD9. The challenge here is how to obtain the
sparsifying basis9. The PCAmethod in [6] first assumes that
the previous TM is known, and then it reduces the ill-posed
property of the TM inverse inference equation via the singular
value decomposition of both the previous and the measured
TM. There is an implicit assumption in [6]. It assumes that
the principal components of the unknown TM that needs
to be estimated are the same as those of the previous TM.
Hence, in this paper, this assumption will be inherited. In
other words, the matrix V can be calculated by using the
previous and measured TM. Consequently, 9 in Eq. 14 will
be built according to Eq. 8. Then, the missing data will be
recovered by solving the following optimization problem:

γ̂ = argmin ‖γ ‖1 s.t. D9γ = P, (15)

where ‖·‖1 is the `1-norm. The computation complexity for
solving Eq. 15 in terms of existing methods (such as basis
pursuit and interior pointmethods) is O

(
L3N 3

)
. The recovery

model in Eq. 15 cannot ensure the non-negativity constraints
of the estimated TM. Hence, we use the Iterative Propor-
tional Fitting algorithm [6] to recalibrate the estimated TM
so it obeys the network tomography model. We now briefly
present the pseudo-code of STKCS as shown in Table 1. Some
TM estimation methods assume that the TM has zero mean,

typically, the principal component analysis method. Hence, in
our method, we first center the TM. Then we implement the
singular value decomposition for the measured TM M̃ . After
that, a sparse representation of the TM is obtained according
to its spatial property. Then a sparse representation of the TM
with respect to the spatio-temporal property is determined
by the Kronecker product. From the sparse representation,
the missing data will be recovered by a convex optimization
model.

TABLE 1. Spatio-temporal Kronecker compressive sensing method.

V. SIMULATION RESULTS AND ANALYSIS
In this section, we evaluate the performance of our method
via simulations using real traffic data. Two different data
sets are used in our simulations. The two data sets have
1500 and 1000 time slots, respectively. The traffic is mea-
sured every 5 and 10 minutes, respectively. The first 500 time
slots are used as the prior of TM to build the sparsify-
ing basis in our method. Further, we compare the STKCS
method with an existing interpolation algorithm, e.g., the
Sparsity Regularized Matrix Factorization (SRMF). SRMF
uses a structured nature to build a novel compressive sensing
framework to recover the missing traffic data. We set the
data loss probability to 50% for STKCS and SRMF. The
regularization parameter for SRMF is 0.1 that is as same as
the configurations in [15].

A. STABILITY OF SPARSIFYING BASIS
In our method, a prior TM is used to build the sparsifying
basis V , and we assume that the sparsifying basis is stable for
the TM with missing entries. This assumption has a remark-
able effect on the estimation error of our method. Hence, we
first evaluate the stability of the sparsifying basis V . We use
1000 time slots from the first traffic data set in this simulation,
and the first 500 time slots are adopted to build the basis V .
For the other 500 time slots, we set the data loss probability to
0, 20%, 40%, 60%, and 80%, respectively. We implement the
singular value decomposition under these cases, and replace

VOLUME 4, 2016 3049
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their sparsifying bases by V . When the data loss probability
is 0, that is the traffic data is completed, the basis is stable [6].
In this case, if we replace its basis by V , and the error is
acceptable. The temporal relative error (TRE) is involved as
a metric in this simulation, which is defined as

TRE (t) =

∥∥m̂ (n, t)− m (n, t)∥∥2
‖m (n, t)‖2

, (16)

where m(n, t) and m̂(n, t) are the traffic entries with original
basis and the entries from the replaced basis.

FIGURE 1. Stability of sparsifying basis.

Figure 1 plots the TREs of 5 cases. Obviously, when the
loss probability is 20%, 40%, 60%, and 80%, their TREs are
smaller than the case that the loss probability is 0. Thereby,
the sparsfying basis is stable.

B. ESTIMATION ACCURACY
We assess the overall performance of our method by compar-
ing each estimator with the real traffic data in Figs. 2 and 3.
The y-axis denotes the real traffic entries, and the x-axis is
indexed by the corresponding estimates.

For traffic data set 1 shown in Fig. 2, we see that STKCS
underestimates the tremendous traffic entries. In contrast,
considering the small traffic data, our method is outstanding
with respect to unbiased estimation. Traffic data set 2 in Fig. 3
illustrates that STKCS is biased and unbiased for small and
tremendous traffic entries, respectively.

C. TEMPORAL AND SPATIAL ERRORS
STKCS utilizes the spatio-temporal property of the TM to
recover the missing traffic data. Therefore, in this subsection,
we refer to the spatial relative error (SRE) and the TRE to
validate the performance of STKCS. The SRE is defined as

SRE(n) =

∥∥m̂ (n, t)− m (n, t)∥∥2
‖m (n, t)‖2

, (17)

FIGURE 2. Real traffic data versus their estimates for traffic data set 1.

FIGURE 3. Real traffic data versus their estimates for traffic data set 2.

where m(n, t) and m̂(n, t) are real traffic entries and their
estimates, respectively. In this subsection, m(n, t) and m̂(n, t)
for the TRES shown by Eq. 16 have the same definitions
in Eq. 17.

Figure 4 plots the SREs and TREs of STKCS and SRMF,
respectively, for traffic data set 1. The x-axis of Fig. 4(a)
expresses the identity (ID) of each OD pair. The y-axis is the
SRE. All OD pairs are arranged in ascending order based on
their averages. The red and blue lines denote STKCS and
SRMF, respectively. For the small OD pairs, the SREs of
SRMF show some large fluctuations. By contrast, the SREs
of STKCS are significantly steady. Consequently, STKCS is
much more stable, and able to estimate some small OD pairs.
Figure 4(b) reveals the TREs of the two algorithms. The
x-axis and y-axis are the time slot and TRE, respectively.
Regarding the TRE shown in Fig. 4(b), we see that our
method has a consistently low TRE compared with that
of SRMF. Regarding traffic data set 2, as shown in Fig. 5(a),
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FIGURE 4. SRE and TRE of traffic data set 1. (a) Flow ID, from smallest to
largest in mean. (b) Time slot order.

FIGURE 5. SRE and TRE of traffic data set 2. (a) Flow ID, from smallest to
largest in mean. (b) Time slot order.

the TRE of SRMF has a huge jitter. Further, the TREs of
STKCS are remarkably low. To analyze the SRE and TRE in
depth, we include the cumulative distribution function in our
simulations. Figure 6 indicates that our method outperforms
the SRMFmethodwith respect to SRE and TRE. Specifically,
for approximately 80% of the OD pairs in traffic data set 1,
the SREs of STKCS and SRMF are less than 0.77 and 2.67,
respectively. Moreover, for 80% of the time slots, the TREs of
the two algorithms are less than 0.22 and 0.42 in turn. Figure 7
shows that in traffic data set 2, the SREs of the two algorithms
are less than 1.25 and 1.42 for approximately 70% of the OD
pairs. The TREs are less than 0.16 and 0.51 for 80% of the
time slots.

D. ESTIMATION BIAS
As shown in Figs. 2 and 3, our method appears to over-
or underestimate more or less. Nevertheless, a biased

FIGURE 6. Cumulative distribution functions of SRE and TRE for traffic
data set 1. (a) x = L2 norm, spatial error. (b) x = L2 norm, temporal error.

FIGURE 7. Cumulative distribution functions of SRE and TRE for traffic
data set 2. (a) x = L2 norm, spatial error. (b) x = L2 norm, temporal error.

estimation is not necessarily bad [6]. Meanwhile, regarding
an unbiased estimation, when it has a remarkably large vari-
ance, it may also be unavailable. Thus, we assess the bias and
variance of the two algorithms in this subsection. Assessing
the bias and variance of an estimation algorithm is useful for
practical application. We here define the standard deviation
as the metric of variance. The bias and standard deviation are
denoted as follows:

b(n) =

L∑
t=1

(m̂(n, t)− m(n, t))

L ,

s(n) =

√√√√√ L∑
t=1

(m̂(n, t)− m(n, t)− b(n))2

L − 1
.

(18)
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FIGURE 8. Estimation bias and standard deviation for traffic data set 1.
(a) Flow ID, from largest to smallest in mean. (b) Standard deviation in
error.

FIGURE 9. Estimation bias and standard deviation for traffic data set 2.
(a) Flow ID, from largest to smallest in mean. (b) Standard deviation in
error.

where L is the length of the collected traffic data. Figure 8(a)
gives the bias of the two algorithms for traffic data set 1.
The x-axis and y-axis denote the ID of each OD pair and the
corresponding bias, respectively. Different from Figs. 4 and 5,
all of the IDs in Fig. 8(a) are arranged in descending order
based on their averages. Figure 8(a) states that the bias of
SRMF is much larger than that of STKCS. Specifically, it
is significantly explicit for the large OD pairs. In contrast,
the bias of STKCS is relatively small for all OD pairs of
traffic data set 1. We can obtain the same conclusion for
traffic data set 2 via the simulation results shown in Fig. 9(a).
Based on the bias of the two algorithms, we can reveal the
bias of the two algorithms versus their standard deviation.
Figures 8(b) and 9(b) indicate that our method has much
larger standard deviation for few traffic entries. This means
that STKCS tends to track the trend of an OD pair over long
time intervals.

VI. CONCLUSION
In this paper, we propose an available interpolation algorithm
to recover the missing entries of a traffic matrix. Our method,
named Spatio-Temporal Kronecker Compressive Sensing,
considers the spatial and temporal properties of traffic
matrices simultaneously. Then, a sparse representation of
traffic matrices is proposed based on the low-rank nature
of traffic matrices. According to the sparse representation
of a traffic matrix, we build an optimization model to recover
the missing data of a traffic matrix. Finally, we assess the
performance of STKCS by using two real traffic data sets.
The simulation results declare that STKCS is outstanding for
the estimation of error compared with previous methods.
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