40 research outputs found

    Massive nutrients offshore transport off the Changjiang Estuary in flooding summer of 2020

    Get PDF
    Flood events significantly increase water discharges and terrigenous material inputs to coastal waters. Riverine nutrients in the Changjiang Estuary are transported by the dispersion of Changjiang Diluted Water (CDW) plumes and detached low-salinity water patches. However, the effects of flooding on nutrient offshore transports have not been well explored. Here, we present the nutrient conditions in the Changjiang Estuary and adjacent East China Sea in the historical flooding year 2020. Comparisons of nutrient distributions between flooding years, drought year and non-flooding years were also made. Our results showed that nitrate flux from the Changjiang River in August 2020 was 1.5 times that of the multi-year averaged flux in non-flooding years. Enormous riverine nutrient input resulted in much higher nutrient concentrations in the outer estuary than those in non-flooding years. In addition, a detached low-salinity water patch was observed, which made the salinity of the northern estuary even lower than that in the historical flooding year 1998. Surface dissolved inorganic nitrate (DIN) level in the low-salinity water patch was even ~16 times of that at nearby station in the drought year 2006. While phosphate (PO43−) concentrations were less than 0.1 μmol L−1 east of 123°E, which was probably caused by intensive biological uptake, as indicated by a high Chlorophyll a (Chl a) concentration (29.08 μg L−1). The depleted PO43− and high N/P of the low-salinity water patch suggested PO43− limitation even under flood conditions. A three end-member mixing model was adopted to identify the contributions of the CDW end-member (CDWend-member) and biological process to nutrient distributions. Our model results showed that the nutrient contribution of the CDWend-member to the estuary (122–124°E, 31–32.5°N) in flooding year 2020 was over double that in drought year 2006. Model-derived biological DIN uptake was as high as 24.65 μmol L−1 at the low-salinity water patch. Accordingly, the estimated net community production was 566–1131 mg C m−2 d−1 within the euphotic zone. The offshore transport of a low-salinity, high-DIN water patch during flooding could probably have a significant influence on biogeochemical cycles in the broad shelf, and even the adjacent Japan Sea

    Characteristics of Mesoscale Convective Systems over China and Its Vicinity Using Geostationary Satellite FY2

    Full text link
    This study investigates mesoscale convective systems (MCSs) over China and its vicinity during the boreal warm season (May-August) from 2005 to 2012 based on data fromthe geostationary satellite Fengyun 2 (FY2) series. The authors classified and analyzed the quasi-circular and elongated MCSs on both large and small scales, including mesoscale convective complexes (MCCs), persistent elongated convective systems (PECSs), meso-ß circular convective systems (MßCCSs), meso-ß elongated convective system (MßECSs), and two additional types named small meso-ß circular convective systems (SMßCCSs) and small meso-ß elongated convective systems (SMßECSs). Results show that nearly 80% of the 8696 MCSs identified in this study fall into the elongated categories. Overall, MCSs occur mainly at three zonal bands with average latitudes around 208, 308, and 508N. The frequency of MCSs occurrences is maximized at the zonal band around 208N and decreases with increase in latitude. During the eight warm seasons, the period of peak systems occurrences is in July, followed decreasingly by June, August, and May. Mean while, fromMay to August three kinds of monthly variations are observed, which are clear northward migration, rapid increase, and persistent high frequency of MCS occurrences. Compared to MCSs in the United States, the four types of MCSs (MCCs, PECSs, MßCCSs, and MßECSs) are relatively smaller both in size and eccentricity but exhibit nearly equal life spans. Moreover, MCSs in both countries share similar positive correlations between their duration and maximum extent. Additionally, the diurnal cycles of MCSs in both countries are similar (local time) regarding the three stages of initiation, maturation, and termination

    Methylprednisolone as Adjunct to Endovascular Thrombectomy for Large-Vessel Occlusion Stroke

    Get PDF
    Importance It is uncertain whether intravenous methylprednisolone improves outcomes for patients with acute ischemic stroke due to large-vessel occlusion (LVO) undergoing endovascular thrombectomy. Objective To assess the efficacy and adverse events of adjunctive intravenous low-dose methylprednisolone to endovascular thrombectomy for acute ischemic stroke secondary to LVO. Design, Setting, and Participants This investigator-initiated, randomized, double-blind, placebo-controlled trial was implemented at 82 hospitals in China, enrolling 1680 patients with stroke and proximal intracranial LVO presenting within 24 hours of time last known to be well. Recruitment took place between February 9, 2022, and June 30, 2023, with a final follow-up on September 30, 2023.InterventionsEligible patients were randomly assigned to intravenous methylprednisolone (n = 839) at 2 mg/kg/d or placebo (n = 841) for 3 days adjunctive to endovascular thrombectomy. Main Outcomes and Measures The primary efficacy outcome was disability level at 90 days as measured by the overall distribution of the modified Rankin Scale scores (range, 0 [no symptoms] to 6 [death]). The primary safety outcomes included mortality at 90 days and the incidence of symptomatic intracranial hemorrhage within 48 hours. Results Among 1680 patients randomized (median age, 69 years; 727 female [43.3%]), 1673 (99.6%) completed the trial. The median 90-day modified Rankin Scale score was 3 (IQR, 1-5) in the methylprednisolone group vs 3 (IQR, 1-6) in the placebo group (adjusted generalized odds ratio for a lower level of disability, 1.10 [95% CI, 0.96-1.25]; P = .17). In the methylprednisolone group, there was a lower mortality rate (23.2% vs 28.5%; adjusted risk ratio, 0.84 [95% CI, 0.71-0.98]; P = .03) and a lower rate of symptomatic intracranial hemorrhage (8.6% vs 11.7%; adjusted risk ratio, 0.74 [95% CI, 0.55-0.99]; P = .04) compared with placebo. Conclusions and Relevance Among patients with acute ischemic stroke due to LVO undergoing endovascular thrombectomy, adjunctive methylprednisolone added to endovascular thrombectomy did not significantly improve the degree of overall disability.Trial RegistrationChiCTR.org.cn Identifier: ChiCTR210005172

    A Lithium-ion Battery RUL Prediction Method Considering the Capacity Regeneration Phenomenon

    No full text
    Prediction of Remaining Useful Life (RUL) of lithium-ion batteries plays a significant role in battery health management. Battery capacity is often chosen as the Health Indicator (HI) in research on lithium-ion battery RUL prediction. In the rest time of batteries, capacity will produce a certain degree of regeneration phenomenon, which exists in the use of each battery. Therefore, considering the capacity regeneration phenomenon in RUL prediction of lithium-ion batteries is helpful to improve the prediction performance of the model. In this paper, a novel method fusing the wavelet decomposition technology (WDT) and the Nonlinear Auto Regressive neural network (NARNN) model for predicting the RUL of a lithium-ion battery is proposed. Firstly, the multi-scale WDT is used to separate the global degradation and local regeneration of a battery capacity series. Then, the RUL prediction framework based on the NARNN model is constructed for the extracted global degradation and local regeneration. Finally, the two parts of the prediction results are combined to obtain the final RUL prediction result. Experiments show that the proposed method can not only effectively capture the capacity regeneration phenomenon, but also has high prediction accuracy and is less affected by different prediction starting points

    A Novel Multi-Robot Task Assignment Scheme Based on a Multi-Angle K-Means Clustering Algorithm and a Two-Stage Load-Balancing Strategy

    No full text
    A practical task assignment is one of the core issues of a multi-robot system. In this paper, a multi-robot task assignment strategy based on load balancing is proposed to effectively balance and plan out the execution cost of each robot when it has a large number of working task points. Considering the variability of the execution task cost in practical situations with different task point categories, the multi-robot task assignment (MRTA) problem is transformed into a multiple traveling salesman problem (MTSP) using a multi-angle K-means clustering algorithm. To solve the problem of unbalanced cost consumed by each robot after clustering assignment, which leads to low efficiency of system completion, a two-stage load-balancing strategy is presented. The first stage of this strategy makes a large adjustment to the unbalanced task set, and the second stage achieves a small fine-tuning to the unbalanced task set. The experimental results show that the standard deviation of the cost ratio of each set decreases when four robots perform the task between 100 and 550 work points using the load-balancing strategy. The reduction in standard deviation is between 3.53% and 83.44%. The maximum cost of individual robots decreases between 0.18% and 14.27%. The proposed method can effectively solve the uneven execution cost of each robot in the task assignment process and improve the efficiency of the system in completing tasks

    Occurrence and distribution of organophosphorus flame retardants/plasticizers in coastal sediments from the Taiwan Strait in China

    No full text
    Concentrations and spatial distributions of organophosphate esters (OPEs) in marine sediment samples in the western Taiwan Strait were investigated and analyzed for the first time. The total OPE concentration (Sigma OPE) in sediments was in the range of 5263-34,232 pg/g (dry weight), with an average value of 12,796 pg/g. Generally, there was a higher abundance of non-halogenated OPEs than halogenated OPEs and aryl OPEs, with tributyl phosphate, tris (2-ethylhexyl) phosphate, and tri-(1-chloro-2-propyl) phosphate being the main components. The EOPE concentrations in the western coastal and northern sampling sites were relatively high. The results indicated that OPEs in the study region originated mainly from terrestrial river inputs and local emission sources, as well as exogenous influxes by ocean currents

    Size-fractionated N2 fixation off the Changjiang Estuary during summer

    Get PDF
    Recent evidence has shown active N2 fixation in coastal eutrophic waters, yet the rate and controlling factors remain poorly understood, particularly in large estuaries. The Changjiang Estuary (CE) and adjacent shelf are characterized by fresh, nitrogen-replete Changjiang Diluted Water (CDW) and saline, nitrogen-depletion intruded Kuroshio water (Taiwan Warm Current and nearshore Kuroshio Branch Current), where N2 fixation may be contributed by different groups (i.e., Trichodesmium and heterotrophic diazotrophs). Here, for the first time, we provide direct measurement of size-fractionated N2 fixation rates (NFRs) off the CE during summer 2014 using the 15N2 bubble tracer method. The results demonstrated considerable spatial variations (southern > northern; offshore > inshore) in surface and depth-integrated NFRs, averaging 0.83 nmol N L−1 d−1 and 24.3 μmol N m−2 d−1, respectively. The highest bulk NFR (99.9 μmol N m−2 d−1; mostly contributed by >10 μm fraction) occurred in the southeastern East China Sea, where suffered from strong intrusion of the Kuroshio water characterized by low N/P ratio (<10) and abundant Trichodesmium (up to 10.23 × 106 trichomes m−2). However, low NFR (mostly contributed by <10 μm fraction) was detected in the CE controlled by the CDW, where NOx concentration (up to 80 μmol L−1) and N/P ratio (>100) were high and Trichodesmium abundance was low. The >10 μm fraction accounted for 60% of depth-integrated bulk NFR over the CE and adjacent shelf. We speculated that the present NFR of >10 μm fraction was mostly supported by Trichodesmium. Spearman rank correlation indicated that the NFR was significantly positively correlated with Trichodesmium abundance, salinity, temperature and Secchi depth, but was negatively with turbidity, N/P ratio, NOx, and chlorophyll a concentration. Our study suggests that distribution and size structure of N2 fixation off the CE are largely regulated by water mass (intruded Kuroshio water and CDW) movement and associated diazotrophs (particularly Trichodesmium) and nutrient conditions

    Structural Optimization of Jet Fish Pump Design Based on a Multi-Objective Genetic Algorithm

    No full text
    Jet fish pumps are efficient hydraulic machinery for fish transportation. Yet, the complex flow phenomenon in it is the major potential risk for damage to fish. The dangerous flow phenomena for fish, such as radial pressure gradient and exposure strain rate, are usually controlled by the structural parameters of jet fish pumps. Therefore, the injury rate of fish can be theoretically decreased by the structural optimization design of jet fish pumps. However, there is a complex nonlinear relation between flow phenomena and key structural parameters. To solve this problem, the present paper established a complex mapping between flow phenomena and structural parameters, based on computational fluid dynamics and a back-propagation neural network. According to this mapping, an NSGA-II multi-objective genetic algorithm was used to optimize the structure of jet fish pumps. The results showed that the optimized jet fish pumps could reduce the internal radial pressure gradient, exposure strain rate and danger zone to 40%, 12.5% and 50% of the pre-optimization level, respectively. Therefore, the optimized jet fish pump could significantly reduce the risk of fish injuries and keep the pump efficiency at a high level. The results could provide a certain reference for relevant structural optimization problems
    corecore