186 research outputs found

    Market expansion, state intervention and wage differentials between economic sectors in urban China : a multilevel analysis

    Get PDF
    This work was supported by the National Natural Science Foundation of China (41501151, 41329001); the China Ministry of Education (11JJDZH006); the National Key Technology R&D Program (2012BAI32B07); and the Research Centre for Urban and Regional Development, Hong Kong Institute of Asia-Pacific Studies. This research is also supported by the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning.The rising earnings inequality in China has sparked a heated debate on the socioeconomic outcomes of market transformation. While a large body of literature has focussed on the temporal trend of wage inequality during the reform period, much less attention has been devoted to the structural causes of regional variations in sectoral wage differentials. Using a micro-data sample from the 2005 one percent population sample survey and multilevel methods, this article examines the geographic variability of wage differentials between economic sectors in urban China, with a particular focus on the combination effects of market expansion and state intervention. The results indicate that sectoral wage differentials vary substantially across regions, and that market expansion interacts with state intervention to reconfigure earnings outcomes. Specifically, prefectures located in the interior region tend to exhibit a large wage premium for the state sectors, while prefectures located in the coastal region tend to display a wage advantage of the foreign-invested sector. The wage gap between the state and non-state sectors is smaller in areas with diversified ownership; openness to foreign investment increases the relative wages of foreign-invested-sector employees; stringent government regulation of industries increases the wage gap between the state monopoly sector and the non-monopoly sector; and strong redistributive power increases the wage premium for the public service sector over other sectors. Our findings suggest the necessity to take into account contextually constituted and locally specific wage-setting mechanisms when studying China’s wage inequality.Publisher PDFPeer reviewe

    First Molecular Characterization of Bovine Leukemia Virus Infections in the Caribbean

    Get PDF
    Citation: Yang Y, Kelly PJ, Bai J, Zhang R, Wang C (2016) First Molecular Characterization of Bovine Leukemia Virus Infections in the Caribbean. PLoS ONE 11(12): e0168379. doi:10.1371/journal.pone.0168379Bovine leukemia virus (BLV) is a retrovirus that causes enzootic bovine leucosis. To investigate the presence and genetic variability of BLV in the Caribbean for the first time, we preformed fluorescence resonance energy transfer (FRET)-PCR for the pol of BLV on DNA from whole blood of cattle from Dominica, Montserrat, Nevis and St. Kitts. Standard PCRs with primers for the env were used for phylogenetic analysis of BLV in positive animals. We found FRET-PCR positive cattle (12.6%, 41/325) on Dominica (5.2%; 4/77) and St. Kitts (19.2%; 37/193) but not on Montserrat (0%, 0/12) or Nevis (0%, 0/43). Positive animals were cows on farms where animals were raised intensively. Phylogenetic analysis using the neighbor-joining (NJ) method on partial and full-length env sequences obtained for strains from Dominica (n = 2) and St. Kitts (n = 5) and those available in GenBank (n = 90) (genotypes 1–10) revealed the Caribbean strains belonged to genotype 1 (98–100% sequence homology). Ours is the first molecular characterization of BLV infections in the Caribbean and the first description of genotype 1 in the region

    Hypoxia-induced autophagy as an additional mechanism in human osteosarcoma radioresistance

    Get PDF
    AbstractOsteosarcoma (OS) responds poorly to radiotherapy, but the mechanism is unclear. We found OS tumor tissues expressed high level of protein HIF-1α, a common biological marker indicative of hypoxia. It is known that hypoxic cells are generally radioresistant because of reduced production of irradiation-induced DNA-damaging reactive oxygen species (ROS) in the anaerobic condition. Here we report another mechanism how hypoxia induces radioresistance. In MG-63 human osteosarcoma cells, hypoxic pretreatment increased the cellular survival in irradiation. These hypoxia-exposed cells displayed compartmental recruitment of GFP-tagged LC3 and expression of protein LC3-II, and restored the radiosensitivity upon autophagy inhibition. The following immunohistochemistry of OS tumor tissue sections revealed upregulated LC3 expression in a correlation with HIF-1α protein level, implying the possibly causative link between hypoxia and autophagy. Further studies in MG-63 cells demonstrated hypoxic pretreatment reduced cellular and mitochondrial ROS production during irradiation, while inhibition of autophagy re-elicited them. Taken together, our study suggests hypoxia can confer cells resistance to irradiation through activated autophagy to accelerate the clearance of cellular ROS products. This might exist in human osteosarcoma as an additional mechanism for radioresistance

    Epidemiological analysis of hydrometra and its predictive value in gynecological tumors

    Get PDF
    IntroductionHydrometra is a common gynecological disease, especially in postmenopausal women. However, its epidemiology, harmfulness, and value in predicting gynecological tumors have not been clearly elucidated.MethodsIn this study, the prevalence rate of and risk factors for hydrometra were investigated in 3,903 women who underwent screening for gynecological diseases at Zhoupu Hospital in Shanghai from 1 January to 31 December 2021. In addition, pathological distribution of hydrometra and its predictive value in gynecological tumors were studied in another 186 patients in whom hydrometra was diagnosed sonographically at Zhoupu Hospital, from 1 January 2020 to 31 December 2021, and who underwent hysteroscopy and postoperative pathological examination.ResultsThe observed prevalence rate of hydrometra was 10.86%, which was higher than the prevalence of other gynecological diseases. Univariate and multivariate analysis indicated that advanced age (OR 1.11) and vaginitis (OR 3.18) were independent risk factors for hydrometra. Among 186 patients with a sonographic diagnosis of uterine fluid, simple hydrometra accounted for 34.41% of cases, inflammation accounted for 16.23%, and hematometra accounted for 2.15%, while gynecological tumors accounted for 5.91%. Moreover, univariate and multivariate analysis indicated that a higher body mass index (>23.92 kg/m2), greater hydrometra volume (i.e., distance between the two layers of endometrium>4.75 mm), and abnormal vaginal bleeding were high-risk predictive factors for gynecological tumors.DiscussionIn conclusion, hydrometra is a common disease, and is a risk factor for endometrial cancer and cervical cancer, especially in patients with higher hydrometra volume, higher BMI, and abnormal vaginal bleeding. It is necessary to pay more attention to hydrometra

    CO-CHANGES I: IRAM 30m CO Observations of Molecular Gas in the Sombrero Galaxy

    Full text link
    Molecular gas plays a critical role in explaining the quiescence of star formation (SF) in massive isolated spiral galaxies, which could be a result of either the low molecular gas content and/or the low SF efficiency. We present IRAM 30m observations of the CO lines in the Sombrero galaxy (NGC~4594), the most massive spiral at d≲30 Mpcd\lesssim30\rm~Mpc. We detect at least one of the three CO lines covered by our observations in all 13 observed positions located at the galactic nucleus and along a ∼25 kpc\sim25\rm~kpc-diameter dusty ring. The total extrapolated molecular gas mass of the galaxy is MH2≈4×108 M⊙M_{\rm H_2}\approx4\times10^{8}\rm~M_\odot. The measured maximum CO gas rotation velocity of ≈379 km s−1\approx379\rm~km~s^{-1} suggests that NGC~4594 locates in a dark matter halo with a mass M200≳1013 M⊙M_{\rm200}\gtrsim10^{13}\rm~M_\odot. Comparing to other galaxy samples, NGC~4594 is extremely gas poor and SF inactive, but the SF efficiency is apparently not inconsistent with that predicted by the Kennicutt-Schmidt law, so there is no evidence of enhanced SF quenching in this extremely massive spiral with a huge bulge. We also calculate the predicted gas supply rate from various sources to replenish the cold gas consumed in SF, and find that the galaxy must experienced a starburst stage at high redshift, then the leftover or recycled gas provides SF fuels to maintain the gradual growth of the galactic disk at a gentle rate.Comment: 21 pages, 13 figures, accepted for publication in MNRA

    Generation of Human Epidermis-Derived Mesenchymal Stem Cell-like Pluripotent Cells and their reprogramming in mouse chimeras

    Get PDF
    Stem cells can be derived from the embryo (embryonic stem cells, ESCs), from adult tissues (adult stem cells, ASCs), and by induction of fibroblasts (induced pluripotent stem cells, iPSs). Ethical problems, immunological rejection, and difficulties in obtaining human tissues limit the use of ESCs in clinical medicine. Induced pluripotent stem cells are difficult to maintain in vitro and carry a greater risk of tumor formation. Furthermore, the complexity of maintenance and propagation is especially difficult in the clinic. Adult stem cells can be isolated from several adult tissues and present the possibility of self-transplantation for the clinical treatment of a variety of human diseases. Recently, several ASCs have been successfully isolated and cultured in vitro, including hematopoietic stem cells (HSCs) , mesenchymal stem cells (MSCs), epidermis stem cells, neural stem cells (NSCs), adipose-derived stem cells (ADSCs), islet stem cells, and germ line stem cells. Human mesenchymal stem cells originate mainly from bone marrow, cord blood, and placenta, but epidermis-derived MSCs have not yet been isolated. We isolated small spindle-shaped cells with strong proliferative potential during the culture of human epidermis cells and designed a medium to isolate and propagate these cells. They resembled MSCs morphologically and demonstrated pluripotency in vivo; thus, we defined these cells as human epidermis-derived mesenchymal stem cell-like pluripotent cells (hEMSCPCs). These hEMSCPCs present a possible new cell resource for tissue engineering and regenerative medicine

    Visualizing the Zhang-Rice singlet, molecular orbitals and pair formation in cuprate

    Full text link
    The parent compound of cuprates is a charge-transfer-type Mott insulator with strong hybridization between the Cu 3dx2−y23d_{\mathrm x^2-y^2} and O 2p2p orbitals. A key question concerning the pairing mechanism is the behavior of doped holes in the antiferromagnetic (AF) Mott insulator background, which is a prototypical quantum many-body problem. It was proposed that doped hole on the O site tends to form a singlet, known as Zhang-Rice singlet (ZRS), with the unpaired Cu spin. But experimentally little is known about the properties of a single hole and the interplay between them that leads to superconductivity. Here we use scanning tunneling microscopy to visualize the electronic states in hole-doped Ca2CuO2Cl2\mathrm{Ca_2CuO_2Cl_2}, aiming to establish the atomic-scale local basis for pair formation. A single doped hole is shown to have an in-gap state and a clover-shaped spatial distribution that can be attributed to a localized ZRS. When the dopants are close enough, they develop delocalized molecular orbitals with characteristic stripe- and ladder-shaped patterns, accompanied by the opening of a small gap around the Fermi level (EFE_{\mathrm F}). With increasing doping, the molecular orbitals proliferate in space and gradually form densely packed plaquettes, but the stripe and ladder patterns remain nearly the same. The low-energy electronic states of the molecular orbitals are intimately related to the local pairing properties, thus play a vitally important role in the emergence of superconductivity. We propose that the Cooper pair is formed by two holes occupying the stripe-like molecular orbital, while the attractive interaction is mediated by the AF spin background

    Effect of aging on acute pancreatitis through gut microbiota

    Get PDF
    BackgroundCompared to younger people, older people have a higher risk and poorer prognosis of acute pancreatitis, but the effect of gut microbiota on acute pancreatitis is still unknown. We aim to investigate the effect of aging gut microbiota on acute pancreatitis and explore the potential mechanism of this phenomenon.MethodsEighteen fecal samples from healthy adult participants, including nine older and nine younger adults were collected. C57BL/6 mice were treated with antibiotics for fecal microbiota transplantation from older and younger participants. Acute pancreatitis was induced by cerulein and lipopolysaccharide in these mice. The effect of the aged gut microbiota was further tested via antibiotic treatment before or after acute pancreatitis induction.ResultsThe gut microbiota of older and younger adults differed greatly. Aged gut microbiota exacerbated acute pancreatitis during both the early and recovery stages. At the same time, the mRNA expression of multiple antimicrobial peptides in the pancreas and ileum declined in the older group. Antibiotic treatment before acute pancreatitis could remove the effect of aging gut microbiota, but antibiotic treatment after acute pancreatitis could not.ConclusionAging can affect acute pancreatitis through gut microbiota which characterizes the deletion of multiple types of non-dominant species. This change in gut microbiota may potentially regulate antimicrobial peptides in the early and recovery stages. The level of antimicrobial peptides has negative correlations with a more severe phenotype
    • …
    corecore