54 research outputs found

    Melting and Dissolving Fly Ash by NaOH for the Removal of Iron, Calcium, and Other Impurities

    Get PDF
    A mixture of fly ash and sodium hydroxide was calcined, which converted mullite (3Al2O3·2SiO2), the high-temperature stability phase containing silicon and aluminum oxides, and quartz into activated silica alumina phase, and they were dissolved by concentrated NaOH solution into soluble SiO32− and AlO2−. The insoluble impurities including Fe2O3, FeO, CaO, and CaSO4 were filtered out. Experiment results show the optimum experimental conditions for the dissolution: temperature is 60°C, 15% NaOH solution is used, liquid–solid mass ratio is 11:1, stirring time is 3 h, and about 78.9% of silicon and 78.1% of aluminum are dissolved. The obtained pure silicon aluminum solution provides the raw material for preparing high-purity molecular sieves, and Fe2O3 content of the prepared P-type molecular sieve is only 0.25%, and the CaO content is only 0.066%. The paper provided a viable method to remove Fe, Ca, etc. in mineral thoroughly

    Roles of heating and helicity in ultrafast all-optical magnetization switching in TbFeCo

    Get PDF
    Using the time-resolved magneto-optical Kerr effect method, helicity dependent all-optical magne- tization switching (HD-AOS) is observed in ferrimagnetic TbFeCo films. Our results reveal the individual roles of the thermal and nonthermal effects after a single circularly polarized laser pulse. The evolution of this ultrafast switching occurs over different time scales, and a defined magnetization reversal time of 460 fs is shown—the fastest ever observed. Micromagnetic simulations based on a single macro-spin model, taking into account both heating and the inverse Faraday effect, are performed which reproduce HDAOS demonstrating a linear path for magnetization reversal

    Dual-pump manipulation of ultrafast demagnetization in TbFeCo

    Get PDF
    Laser-induced ultrafast demagnetization in TbFeCo has been studied with a dual-pumping system. Five different laser fluence combinations were applied at three different time intervals between two pump pulses. The experimental results are also compared with computational simulations using the atomistic model. Importantly, this demagnetization can be controllably manipulated in both its magnitude and temporal response

    Element-specific spin and orbital moments and perpendicular magnetic anisotropy in Ta/CoFeB/MgO structures

    Get PDF
    Perpendicular magnetic anisotropy (PMA) in the Ta/CoFeB/MgO system has been studied using x-ray magnetic circular dichroism and vibrating sample magnetometry. The ratios of the orbital to spin magnetic moments of Co atoms in the Ta/CoFeB/MgO structures with PMA have been found to be enhanced by 100%, compared with the Ta/CoFeB/Ta structure without PMA. The orbital moments of Co are as large as 0.30 μ B, more than half of their spin moments in the perpendicularly magnetized Ta/CoFeB/MgO structures. The results indicate that the PMA observed in the CoFeB/MgO structures is related to the increased spin-orbital coupling of the Co atoms. This work offers experimental evidence of the correlation between PMA and the element-specific spin and orbital moments in the Ta/CoFeB/MgO systems

    The effect of growth sequence on magnetization damping in Ta/CoFeB/MgO structures

    Get PDF
    Magnetization damping is a key parameter to control the critical current and the switching speed in magnetic random access memory, and here we report the effect of the growth sequence on the magnetic dynamics properties of perpendicularly magnetized Ta/CoFeB/MgO structures. Ultrathin CoFeB films have been grown between Ta and MgO but with different stack sequences, i.e. substrate/Ta/CoFeB/MgO/Ta and substrate/Ta/MgO/CoFeB/Ta. The magnetization dynamics induced by femtosecond laser was investigated by using all-optical pump-probe measurements. We found that the Gilbert damping constant was modulated by reversing stack structures, which offers the potential to tune the damping parameter by the growth sequence. The Gilbert damping constant was enhanced from 0.017 for substrate/Ta/CoFeB/MgO/Ta to 0.027 for substrate/Ta/MgO/CoFeB/Ta. We believe that this enhancement originates from the increase of intermixing at the CoFeB/Ta when the Ta atom layer was grown after the CoFeB layer
    • …
    corecore