2,368 research outputs found

    Epitope mapping by a Wnt-blocking antibody: evidence of the Wnt binding domain in heparan sulfate

    Get PDF
    Heparan sulfate (HS) is a polysaccharide known to modulate many important biological processes, including Wnt signaling. However, the biochemical interaction between HS and Wnt molecules is not well characterized largely due to the lack of suitable methods. To determine the Wnt binding domain in HS, we used a Wnt signaling-inhibitory antibody (HS20) and a panel of synthetic HS oligosaccharides with distinct lengths and sulfation modifications. We found that the binding of HS20 to heparan sulfate required sulfation at both the C2 position (2-O-sulfation) and C6 position (6-O-sulfation). The oligosaccharides with the greatest competitive effect for HS20 binding were between six and eight saccharide residues in length. Additionally, a four residue-long oligosaccharide could also be recognized by HS20 if an additional 3-O-sulfation modification was present. Furthermore, similar oligosaccharides with 2-O, 6-O and 3-O-sulfations showed inhibition for Wnt activation. These results have revealed that HS20 and Wnt recognize a HS structure containing IdoA2S and GlcNS6S, and that the 3-O-sulfation in GlcNS6S3S significantly enhances the binding of both HS20 and Wnt. This study provides the evidence for identifying the Wnt binding domain in HS and suggests a therapeutic approach to target the interaction of Wnt and HS in cancer and other diseases

    Un-equivalency Theorem between Deformed and undeformed Heisenberg-Weyl's Algebras

    Get PDF
    Two fundamental issues about the relation between the deformed Heisenberg-Weyl algebra in noncommutative space and the undeformed one in commutative space are elucidated. First the un-equivalency theorem between two algebras is proved: the deformed algebra related to the undeformed one by a non-orthogonal similarity transformation is explored; furthermore, non-existence of a unitary similarity transformation which transforms the deformed algebra to the undeformed one is demonstrated. Secondly the uniqueness of realizing the deformed phase space variables via the undeformed ones is elucidated: both the deformed Heisenberg-Weyl algebra and the deformed bosonic algebra should be maintained under a linear transformation between two sets of phase space variables which fixes that such a linear transformation is unique. Elucidation of this un-equivalency theorem has basic meaning both in theory and experiment.Comment: 12 page

    Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. IV. Hβ\beta Time Lags and Implications for Super-Eddington Accretion

    Full text link
    We have completed two years of photometric and spectroscopic monitoring of a large number of active galactic nuclei (AGNs) with very high accretion rates. In this paper, we report on the result of the second phase of the campaign, during 2013--2014, and the measurements of five new Hβ\beta time lags out of eight monitored AGNs. All five objects were identified as super-Eddington accreting massive black holes (SEAMBHs). The highest measured accretion rates for the objects in this campaign are M˙200\dot{\mathscr{M}}\gtrsim 200, where M˙=M˙/LEddc2\dot{\mathscr{M}}= \dot{M}_{\bullet}/L_{\rm Edd}c^{-2}, M˙\dot{M}_{\bullet} is the mass accretion rates, LEddL_{\rm Edd} is the Eddington luminosity and cc is the speed of light. We find that the Hβ\beta time lags in SEAMBHs are significantly shorter than those measured in sub-Eddington AGNs, and the deviations increase with increasing accretion rates. Thus, the relationship between broad-line region size (RHβR_{_{\rm H\beta}}) and optical luminosity at 5100\AA, RHβL5100R_{_{\rm H\beta}}-L_{5100}, requires accretion rate as an additional parameter. We propose that much of the effect may be due to the strong anisotropy of the emitted slim-disk radiation. Scaling RHβR_{_{\rm H\beta}} by the gravitational radius of the black hole, we define a new radius-mass parameter (YY) and show that it saturates at a critical accretion rate of M˙c=630\dot{\mathscr{M}}_c=6\sim 30, indicating a transition from thin to slim accretion disk and a saturated luminosity of the slim disks. The parameter YY is a very useful probe for understanding the various types of accretion onto massive black holes. We briefly comment on implications to the general population of super-Eddington AGNs in the universe and applications to cosmology.Comment: 53 pages, 12 figures, 7 tables, accepted for publication in The Astrophysical Journa

    A Systematic Analysis of Fe II Emission in Quasars: Evidence for Inflow to the Central Black Hole

    Full text link
    Broad Fe II emission is a prominent feature of the optical and ultraviolet spectra of quasars. We report on a systematical investigation of optical Fe II emission in a large sample of 4037 z < 0.8 quasars selected from the Sloan Digital Sky Survey. We have developed and tested a detailed line-fitting technique, taking into account the complex continuum and narrow and broad emission-line spectrum. Our primary goal is to quantify the velocity broadening and velocity shift of the Fe II spectrum in order to constrain the location of the Fe II-emitting region and its relation to the broad-line region. We find that the majority of quasars show Fe II emission that is redshifted, typically by ~ 400 km/s but up to 2000 km/s, with respect to the systemic velocity of the narrow-line region or of the conventional broad-line region as traced by the Hbeta line. Moreover, the line width of Fe II is significantly narrower than that of the broad component of Hbeta. We show that the magnitude of the Fe II redshift correlates inversely with the Eddington ratio, and that there is a tendency for sources with redshifted Fe II emission to show red asymmetry in the Hbeta line. These characteristics strongly suggest that Fe II originates from a location different from, and most likely exterior to, the region that produces most of Hbeta. The Fe II-emitting zone traces a portion of the broad-line region of intermediate velocities whose dynamics may be dominated by infall.Comment: 20 pages, 14 figures, accepted for publication in Ap
    corecore