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SUMMARY 

 

Nanostructured growth of InGaN on Si substrates targeting photovoltaic applications 

was performed in this work. The technique mitigates the challenges plaguing InGaN 

heteroepitaxy on Si which result in inadequate quality high In content InGaN. The 

integration of InGaN with nanostructures on Si will facilitate development of 

monolithic InGaN/Si tandem solar cells which combine the bandgap tunability of 

InGaN and low-cost, wide availability of Si. Two growth approaches are proposed, 

namely, (A) nano selective area growth (nano-SAG) of InGaN through a nanoporous 

mask fabricated on Si substrate, or Scheme A, and (B) nanoheteroepitaxy of InGaN 

on Si nanopillars, or Scheme B.  

 

Nanopatterning techniques based on Step and Flash
TM

 Imprint Lithography (S-FIL
TM

), 

a form of wafer-scale nanoimprint lithography, were first developed. These are 

classified according to the two Schemes: (A) Fabrication of uniform, tunable aspect 

ratio nanoporous SiNy masks on AlN/Si(111) substrates by combining S-FIL
TM

 with 

angled metal deposition, and (B) Fabrication of Si nanopillar arrays of variable 

patterns and adjustable aspect ratio by combining S-FIL
TM

 with metal-catalyzed 

electroless etching (MCEE). To ensure a manageable scope, only Type A templates 

were selected for subsequent growth. 

 

A metalorganic chemical vapour deposition (MOCVD) study of InGaN films on bare 

AlN/Si(111) substrates was then performed to examine preliminary growth conditions. 

Substrate pre-annealing in H2 at 1000°C was critical for epitaxy. Further, phase 

separation and In droplet formation at low growth temperature T (655°C) may be 

suppressed by elevated reactor pressure P (300 Torr). However, while low T favors 



x 

 

higher In content x, crystal quality suffers. For x > 0.2, photoluminescence (PL) was 

absent. Nano-SAG at 780°C and 300 Torr was then performed on Type A templates 

to achieve InGaN nanopyramid array. Compared to the control film, the crystalline 

quality of nanopyramids is notably increased through dislocation confinement, 

bending, and filtering. Morever, higher x by an absolute 4.5% due to strain relaxation, 

and a four-fold increase in internal quantum efficiency to 17.5% are achieved. 

Average reflectance is also reduced from 23.6 % to 8.3% due to light trapping.       

 

The impact of T, P, growth duration and V/III ratio on x, morphological, structural 

and PL qualities of the InGaN nanopyamids was subsequently studied. Lower T 

permits higher x, but T  < 750°C are correlated with polycrystalline deposits, In 

droplet formation and structural degradation. Alternatively, lowering P at a 

moderately high T (~ 775°C), increases x due to enhanced mass transport, without as 

significant degradation. This also enhances growth rate and improves size uniformity. 

The nanopyramids generally exhibit greater lattice tilt than the controls due to 

dislocation bending. Tilt increases with reduced P (increased x) but is slight. While 

lattice twist increases with x, it is offset by epitaxial lateral overgrowth. Compared to 

the controls, the nanopyramids consistently yielded higher x, lower average 

reflectance (< 9%) and a multi-fold increase in PL intensity with tunable emission 

from 3.05 eV to 1.93 eV. Larger nanopyramids and high V/III ratios in N2 growth 

ambient are also advocated for improved morphological and structural properties. 

Lastly, functional InGaN/GaN MQW core-shell structures were successfully grown 

crack-free on InGaN nanopyramid array in contrast to the cracked control.  
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Chapter 1 Introduction 

 

1.1. Current Status of Photovoltaics (PV) for Solar Energy Harvesting 

Among all photovoltaic (PV) technologies, Si wafer based PV technology dominates 

the global market accounting for ~ 86% of total shipments [1] due to material 

abundance and mature processing technologies adapted from the microelectronics 

industry [2]. Out of this, monocrystalline Si (c-Si) technology account for ~ 40%. 

This typically employs single cell architectures with commercially available c- Si 

wafer based cell efficiencies approaching > 19%.  

 

World record PV conversion efficiencies, on the other hand, are currently held by 

concentrating multi-junction (MJ) PV technologies based on direct bandgap III-V 

ternary or quaternary compound semiconductors comprising aluminium, gallium, 

indium, arsenic, and phosphorus, epitaxially grown by metalorganic chemical vapour 

deposition (MOCVD) or molecular beam epitaxy (MBE) on germanium or gallium 

arsenide substrates [3]. The present world record of 44.4% is achieved in an 

InGaP/GaAs/InGaAs triple-junction solar cell (surface area ~ 0.165 cm
2
) under 

optical concentration (302) [4, 5]. See Figure 1.1. Optical concentration onto minute 

cell areas is critical to improve the viability of III-V MJ PV technology due to the 

expensive and relatively low throughput nature of the growth process even with 

industrial MOCVD systems used in the light emitting diode (LED) industry [3]. From 

a materials viewpoint, however, large-scale terawatt deployment of this high 

efficiency PV technology is predicted to be restricted by the cost and availability of 

Ge or GaAs substrates [6]. The efficient use, recycling of these substrates, and/or the 

migration to less expensive, more abundant substrates may aid in the large-scale 

deployment of this technology.  
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Figure 1.1 Chart showing the best solar cell efficiencies. The current record efficiency of 44.4% 

is held by Sharp in a triple-junction concentrator solar cell. (Reprinted from ref. [4]) 

 

Multijunction or tandem solar cells are highly efficient because they are designed to 

judiciously divide the incident solar spectrum between each subcell for harvesting. 

This reduces the fundamental losses of transmission and thermalization associated 

with single energy gap solar cells [3]. As mentioned before, record efficiencies in 

excess of 40% (under optical concentration), almost double that of commercial high 

efficiency Si cells, have already been achieved and are still on the rise [4]. In fact, 

higher efficiency can theoretically be achieved by more optimal bandgap 

combinations and greater number of subcells within the tandem stack. Unfortunately, 

this is difficult to achieve in practice due to a lack of materials with suitable bandgaps 

and the same lattice constants. Careful management of the lattice mismatch is 

essential to avoid the generation of crystal lattice defects and dislocations which act 

as undesirable recombination centres, and adversely impact PV performance.  
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1.2. Motivation for Integration of InGaN with Nanostructures on Si in 

PV 

The most common MJ III-V solar cells use the completely lattice-matched 

Ga0.5In0.5P/Ga0.99In0.01As/Ge triple junction structure [3]. However, the successful 

growth/integration of lattice-mismatched materials with more optimal bandgaps will 

further increase the efficiency of multijunction photovoltaics [7]. The InGaN/Si 

material system is highly promising as it combines the wide bandgap tunability of 

InGaN, and low-cost, wide availability of Si. However, lattice mismatch growth leads 

to the generation of structural defects that degrade device efficiency. Other challenges 

also exist in InGaN heteroepitaxy on Si, namely, large mismatch in thermal 

expansion, growth process limitations, and phase separation. Nanostructuring has 

been postulated to mitigate these issues. Hence, nanostructured growth of InGaN on 

Si substrate is pursued in this work. The integration of InGaN with nanostructures on 

the Si platform will facilitate the development of monolithic vertically integrated 

InGaN/Si tandem solar cells which are cost-effective, and possess broad solar 

absorption and high efficiency. In the following sections, the advantages of InGaN, Si 

as a substrate, potential of InGaN solar cells, and application of nanostructuring 

schemes are examined in greater detail. 

 

1.2.1. Advantages of InGaN for PV Applications 

The Group III phosphides and the Group III arsenide have conventionally been used 

in III-V MJ photovoltaics. Recently, the Group III nitrides have emerged as a very 

promising class of III-V compound semiconductors. These have led to significant 

progress in the semiconductor industry, such as in the industrial realization of 

InGaN/GaN-based violet, blue and green light emitting diodes (LEDs) and laser 

diodes [8, 9], as well as, in high efficiency and high voltage high electron mobility 

transistors (HEMTs), and high power electronics such as metal-oxide-semiconductor 
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field-effect transistors (MOSFETs) and metal-semiconductor field effect transistors 

(MESFETs). InxGa1-xN is a ternary alloy belonging to the III-nitrides with a direct 

bandgap Eg that can be tuned from 0.7 eV (in InN) to 3.4 eV (in GaN) by varying the 

indium composition x from 1 to 0. The broad Eg range covers nearly the entire solar 

spectrum as shown in Figure 1.2, favouring its application in full-spectrum 

photovoltaics [10, 11]. Materials with direct Eg greater than 2.0 eV are attractive 

because more than half of the solar spectrum energy occurs above 2.0 eV.  While the 

III-phosphides and III-arsenides can be combined to form semiconductors alloys with 

a wider range of bandgaps Eg (up to ~2.5 eV in AlP), part of the Eg range, including 

that of AlP, is indirect in nature. A consequence of indirect bandgaps is the lower 

optical absorption coefficients. The broad range of direct Eg in InxGa1-xN enables the 

incorporation of more subcells with more optimal Eg combinations in tandem solar 

cells to reduce the fundamental losses of transmission and thermalization [12]. 

 

 

Figure 1.2 Graphs showing the ASTM G173-03 reference solar spectrum (top) and the 

continuously tunable bandgap energies Eg of InxGa1-xN (bottom). The latter spans the UV, 

visible and infrared regions and covers majority of the solar spectrum. 
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Due to its direct Eg, InxGa1-xN possesses a very high optical absorption coefficient of 

~ 10
5
 cm

-1
 at just 0.1 eV above the Eg. This is nearly an order of magnitude higher 

than that of GaAs [13] and offers the potential of very thin solar cell absorber layers 

which reduces the material and time required for growth. InxGa1-xN is also 

characterized by low effective carrier masses and high carrier mobilities [10, 11, 14-

16]. Further, the semiconductor alloy exhibits excellent radiation resistance [11] and 

strong phonon bottleneck effects that slow down hot carrier cooling [17]. Moreover, 

compared to conventional III-V multi-junction solar cells which typically combine 

III-phosphides and III-arsenides to access a broader range of Eg combinations, the III-

nitrides may be grown as a solitary alloy system due to its broadly tunable Eg. This 

simplifies and streamlines the growth process. The collective possession of the above 

traits makes InxGa1-xN a very attractive material for full-spectrum photovoltaics. 

 

1.2.2. Merits of Si as a Growth Substrate for InGaN PV Applications 

Native GaN bulk substrates, typically grown by hydride vapour phase epitaxy or 

ammonothermal methods, are prohibitively expensive [18, 19]. Due to the high-cost, 

low-availability of these substrate, the III-nitrides are traditionally grown lattice-

mismatched on sapphire or silicon carbide substrates. In recent years, however, there 

has been an interest to grow the material on Si substrates. Although growth remains 

lattice-mismatched, the cost benefits are substantial. While a 2” GaN wafer substrate 

costs at least US$2000, and a 2” sapphire substrate US$10, a 6” Si wafer with 9 times 

the area costs only US$12 [18]. Due to the abundance of Si and mature Si wafer 

production techniques fuelled by the established Si microelectronics industry, Si 

wafers of high crystalline quality and various specifications, e.g. in terms of doping 

type and concentration, lattice orientation, surface roughness and other electronic and 

mechanical properties, are widely available. Moreover, they may be realized in large 

sizes up to 12” in diameters. Such large sizes are suitable for large-scale batch 
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processing and growth, thus contributing to higher throughputs and lower effective 

costs per run. The wide availability and significant cost reduction potential are key 

benefits of adopting Si as a growth substrate for III-nitrides.  

 

In the growth of InGaN on Si substrates for photovoltaic applications, we propose 

that the latter may conveniently serve as the bottom cell in InGaN/Si hybrid tandem 

solar cell architectures to harvest low energy photons (E < 1.12 eV). See Figure 1.3(a). 

The concept of high-efficiency monolithic InGaN/Si hybrid tandem solar cells has 

been mooted theoretically. Using realistic material parameters, it has been shown that 

double junction InGaN/Si tandem solar cells may achieve efficiencies of ~ 27% to 29% 

[20-22] even without optical concentration. In fact, for triple junction 

InGaN/InGaN/Si configurations with appropriate bandgap combinations, efficiencies 

in excess of 35% are possible [22]. See Figure 1.3(b). Efforts to realize such 

architectures have recently been reported [23-26]. However, progress is limited and 

further research and development, which is the subject of this work, is warranted.  

 

 

Figure 1.3 (a) Schematic of a double junction InGaN/Si tandem solar cell consisting of a 

InGaN top cell and a Si bottom cell. (b) Isoefficiency plot of a triple junction InGaN/InGaN/Si 

solar cell as a function of the bandgaps of the two InGaN subcells. (Reprinted from ref. [22]) 
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In addition, the establishment of the Si microelectronics industry has led to the 

development of mature processing techniques for integrated circuit (IC) fabrication. 

These include the major methods for doping, dielectric deposition, photolithography, 

wet and dry etching, and metallization, etc. The techniques have been adopted by the 

Si PV industry for fabrication of industry c-Si wafer solar cells which are known for 

their reliability and relatively high efficiencies. The realization of the Si bottom cell 

in the proposed InGaN/Si tandem solar cell may be expedited by drawing upon the 

knowledge in Si processing from the Si microelectronics and PV industries.  

 

InGaN/Si tandem solar cells also possess one additional benefit over those based on 

traditional III-V materials. A low resistance ohmic junction is naturally formed at a n-

In0.46Ga0.54N/p-Si interface [22]. Tandem cells can be designed to incorporate such an 

interface to avoid heavy doping or formation of a tunnel junction at the InGaN/Si 

interface.  This characteristic arises because at x ~ 0.46, the conduction band of 

InGaN has the same energy relative to the vacuum level as the valence band of Si 

[24]. See Figure 1.4. In fact, the ohmic behaviour has been experimentally observed 

for n-InGaN/p-Si junctions [24, 27]. For other x, a tunnel junction may be necessary. 

 

 

Figure 1.4 Energy diagram showing the conduction and valence bands of InGaN as a function 

of In composition x. Those of Si are also shown for comparison. (Reprinted from ref. [24]) 
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Si also bears other qualities that make it an excellent substrate. These include its 

mechanical stability which see it often used as a handle substrate for III-V MJ solar 

cells, and good thermal conductivity which allows it to dissipate heat efficiently. The 

latter is important as the rise in temperature under solar irradiation can impair 

photovoltaic performance. By combining the aforementioned merits of Si as a 

substrate and full-spectrum PV potential of InGaN, high efficiency tandem solar cells 

can be achieved at a lower cost for realistic large scale deployment. 

 

1.2.3. Potential and Technical Barriers of InGaN Solar Cells 

In the typical lattice-matched In0.5Ga0.5P/In0.01Ga0.99As/Ge triple junction solar cell, 

conversion efficiencies of ~ 32% and ~ 40.1% under 1-sun and 135-suns, respectively, 

have been achieved [28]. However, current-matching which is required to maximize 

the efficiency of tandem cells is not realized due to restriction of materials selection 

to lattice matched materials. Further, future terrestrial multijunction solar cells will 

likely feature four to six junctions to increase the performance potential of 

multijunction technology (reduce thermalization and transmission losses) [7]. Work 

on 4-junction solar cells is already under way [29] and practical cell efficiencies up to 

~ 47% under 500-suns AM1.5D illumination with a Eg combination of ~ 

1.9/1.4/1.0/0.7 eV have been projected [7].  

 

To achieve the required Eg combinations in multijunction photovoltaics, the 

conventional III-V approach draws upon the III-phosphides, III-arsenides, and 

possibly the dilute nitrides, as well as their alloys. Ultimately, the use of lattice 

mismatched materials is inevitable, and fabrication likely involves (1) metamorphic 

growth and/or (2) wafer-bonded, layer-transferred epitaxial technologies [7]. The use 

of multiple material systems and complex fabrication methods complicate this 

approach. Further, the largest direct Eg available in the AlGaInAsP alloy system is 
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only ~ 2.2 eV which occurs in InGaP [30-32]. Larger Eg (> 2.24 eV) are required for 

multijunction solar cells with six or more junctions [33].  This is overcome in the 

InGaN material system where the Eg is direct and can be conveniently tuned from 0.7 

eV to 3.4 eV by adjusting the In content without addition of other materials.  

 

Simulation of 4-junction InGaN-based solar cells shows a power conversion 

efficiency of ~ 46.45% [34] which is close to that mentioned above (~ 47%). 

InGaN/Si tandem solar cells are promising because they also combine the cost-

effectiveness of Si substrates. As discussed in Section 1.2.2, efficiencies of ~ 29% [20, 

21] can be achieved for double junction structures even without optical concentration, 

while efficiencies in excess of 35% are possible for triple junction InGaN/InGaN/Si 

configurations with appropriate bandgap combinations [22]. 

 

InGaN solar cells possessing various device architectures such as p-GaN/i-InGaN/n-

GaN heterojunction [35-38], p-i-n InGaN homojunction [39, 40], p-n InGaN 

homojunction [41], and InGaN/GaN multiple quantum wells [42-44], have been 

reported and show good photovoltaic effects.  However, due to non-optimal bandgaps 

of low In content InGaN (high In content is correlated with poor structural quality), 

high densities of threading dislocations, stacking faults, phase separation, and other 

structural defects, power conversion efficiencies of these solar cells are relatively low 

[45]. The highest value, ~ 3.4% with 200 suns concentration [42], is achieved by 

MQW structures (x ~ 0.17) where InxGa1-xN wells are kept within the critical 

thickness thus minimizing dislocation generation, and phase separation is suppressed 

by elastic strain. Good quality high In content InGaN quantum wells remain difficult 

to achieve due to the large lattice mismatch involved, and the relatively low 

temperature required to preserve In content. These InGaN growth challenges are 

elaborated in Section 2.3.  It is important to point out that due to the small well 
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thickness in MQW device structures, several tens of wells are required for sufficient 

light absorption. Maintaining good crystal quality over such a great number of wells 

may be difficult [46]. Further, piezoelectric polarization effects can also reduce the 

efficiencies of InGaN/GaN solar cells as the polarization-induced electric fields 

oppose carrier collection [47, 48].  

 

In summary, the technical barriers associated with InGaN solar cells are related to 

both growth issues which affect structural quality, and polarization effects. These 

have inhibited the realization of high performance InGaN single and multijunction 

solar cells. However, the challenges can be mitigated by the nanostructuring 

approaches advocated in this work. This is discussed as follows in Section 1.2.4. 

 

1.2.4. Relevance of Nanostructuring and its Benefits 

Heteroepitaxy of high quality InGaN films with diverse In content and adequate 

thickness for PV applications is challenging because of thermal and lattice mismatch, 

compositional non-uniformity and phase separation, and temperature tradeoff 

between structural quality and In content. These challenges are compounded by Ga-

meltback etching of Si and unintentional nitridation of Si during growth. InGaN 

growth issues are discussed in detail in Section 2.3. Nanostructuring in material 

growth offers two key benefits, namely, strain relaxation and dislocation reduction. 

By incorporating appropriate device architecture designs with suitable 

nanostructuring schemes, the challenges can be overcome. In this section, we discuss 

nanostructuring with respect to two Schemes, A and B, and how they can overcome 

the growth challenges. Other benefits are also outlined. Both Schemes employ 

nanopatterned substrates. However, while material growth is initiated from nano-

scale recessed regions (nanopores) in Scheme A, Scheme B involves material growth 
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from elevated nano-scale areas (nanopillars). In both cases, nanostructures or 

coalesced epilayers can be attained.  

 

1.2.4.1. Nano Selective Area Growth (Nano-SAG or Scheme A)  

Scheme A involves the selective area growth (SAG) of material into nanostructures 

by employing a nanoporous mask fabricated over the substrate. An illustration of the 

concept is depicted in Figure 1.5. Due to the use of pores with nano-scale dimensions 

(~ 10 nm to ~ 250 nm), Scheme A is termed nano selective area growth. This 

distinguishes it from traditional SAG using micron-sized features. The deposition of a 

buffer layer may be required prior to mask fabrication to prevent unwanted chemical 

reaction between the material to be grown and the substrate, or to improve the growth 

quality. The mask material is chosen to ensure good growth selectivity within the 

pores relative to the mask, and growth conditions are tuned to ensure growth is 

initiated from the nano-scale recessed regions and proceeds out to form 

nanostructures. Figure 1.5(a) shows nanostructures with emerged nanopyramidal tops. 

However, prismatic structures, e.g. nanorods, are possible depending on growth 

conditions [49]. If epitaxial lateral overgrowth (ELO) is enforced, a coalesced 

epilayer may be achieved as illustrated in Figure 1.5(b). 
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Figure 1.5 (a) Schematic showing nano selective area growth (nano-SAG) of nanostructures 

through a nanoporous mask fabricated on the substrate. (Scheme A) The nanostructured 

morphology provides three-dimensional strain relief. Threading dislocation (TD) behaviour 

induced in nano-SAG acts to increase the volume of dislocation-free regions. (b) Schematic 

showing the coalesced epilayer arising from nano-epitaxial lateral overgrowth (nano-ELO). 

Dislocation bending and annihilation serve to reduce the TD density in the overgrown region.  

 

1.2.4.2. Nanoheteroepitaxy on Nanopillar Substrates (Scheme B)  

Like Scheme A, Scheme B involves the heteroepitaxy of nanostructures. However, no 

SAG mask is deposited prior to growth. Instead, the substrate is directly patterned to 

form an array of nanopillars or nano-scale elevated regions (mesas) where material 

growth is targeted. A conformal layer of buffer material may be deposited after 

patterning to prevent unwanted chemical reaction between the nanostructure material 

and the substrate during growth. See Figure 1.6(a). The aspect ratio, density, size and 

arrangement of the nanopillars may be designed to favor growth on their top surface. 

However, some depositions on the sides and recessed regions may be unavoidable. 

Figure 1.6(a) shows truncated nanopyramids being grown on the nanopillars [50]. 

However, prismatic nanostructures may also be possible [51]. In fact, high aspect 

ratio towers have been obtained in patterned substrate growth [52]. Further, in 
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principle, growth conditions may also be tuned to facilitate epitaxial lateral growth to 

obtain a coalesced epilayer. See Figure 1.6(b). 

 

 

Figure 1.6 (a) Schematic diagram showing nanoheteroepitaxy of nanostructures on nano-scale 

mesas or nanopillars patterned directly from the substrate. (Scheme B) Some unintentional 

growth may be present at the recesses of the pattern due to a lack of growth selectivity. The 

nanostructured morphology provides three-dimensional strain relief. Threading dislocation 

(TD) behaviour in a nanostructure acts to increase the volume of dislocation-free regions. (b) 

Schematic showing the coalesced epilayer arising from epitaxial lateral growth. Dislocation 

bending and annihilation serve to reduce the TD density in the overgrown region. 

 

1.2.4.3. Benefits of Nanostructures  

Dislocations are detrimental to PV device performance. Threading dislocations (TDs) 

may be generated at a lattice mismatched interface under energetically favorable 

conditions for relaxation of strain. High TD densities are common in III-nitride 

heteroepitaxy due to the extreme difference in lattice constants between the III-

nitrides and the substrate, and within the III-nitrides. See Section 2.3.2. In Figure 

1.5(a) and Figure 1.6(a), TDs are shown to occur at both the substrate/buffer and 

buffer/nanostructure interfaces with the TDs threading into the nanostructures.  
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However, for sufficiently small nanostructures with diameters in the 10 – 100 nm 

range or less, a reduction in interfacial mismatch dislocations is possible [53]. The 

size range depends strongly on the lattice mismatch and mechanical properties of the 

materials, and may extend to larger sizes for smaller lattice mismatches and more 

compliant nanostructure materials, and vice versa [54]. This is because the small size 

of the nanostructure allows it to deform in three dimensions. The stress and strain 

associated with the lattice mismatch at the heterojunction decays exponentially from 

the heterointerface. If the strain energy is less than the energy required for a defect to 

form, the nanostructure remains defect free [53-57]. See right nanostructure in Figure 

1.5(a) and Figure 1.6(a). In the same vein, epilayer cracking (arising from a mismatch 

in coefficient of thermal expansion (CTE) between the material to be grown and the 

substrate) may be avoided with a nanostructure approach since this lowers the total 

strain energy. If the total strain energy of the nanostructure array is lower than the 

energy for formation of cracks, cracking is avoided.    

 

Even if dislocations are introduced into a nanostructure, e.g. due to an exceedingly 

large mismatch, defective buffer, or poor starting growth interface, selective area 

growth can still serve to reduce them [58] as explained by the dislocation behavior 

summarized and numbered in Figure 1.5(a) and Figure 1.6(a). First, in Scheme A, the 

nanoporous mask template directly blocks threading dislocations (TDs) in the 

underlying layer from propagating into the overgrown region. For the coalesced film, 

assuming a random distribution of TDs in the buffer, the fraction FTD of TDs blocked 

by the template is given by the area fraction occupied by the template. For a 

hexagonal array of circular pores with diameter d and periodicity p, FTD is given by  
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 𝐹TD ≈ 1 −
𝜋𝑑2

2√3𝑝2
 

(1-1) 

 

Hence, depending on the pattern dimensions and arrangement in the mask template, a 

significant fraction of TDs can be “blocked” at first pass by the template as in 

epitaxial lateral overgrowth (ELO) [59-61]. From Equation (1-1), adoption of a 

nanoporous mask template with smaller d will be beneficial for template filtering of 

TDs. In Scheme B, by facilitating pendeoepitaxy (“hanging” ELO) from growths on 

the mesas, reduction in TD densities can be achieved in the coalesced film too. 

 

In Scheme A, bending of some TDs towards the sidewalls of the nanostructure within 

the pores and subsequent “exit” from the nanostructure act further to improve the 

structural quality of the nanostructures. Such a phenomenon was first calculated in 

the 1950s by Eshelby [62] for screw dislocations within a semi-infinite thin rod with 

radius r and a fixed end. According to him, the effect of free surfaces or image forces 

on a screw dislocation located at a distance  more than 0.54r from the axis of the rod 

is sufficient to drive it out. The phenomenon was later numerically modeled and 

experimentally shown by Colby et al. for pyramidal tip GaN nanostructures grown on 

hydride vapour phase epitaxy (HVPE) GaN substrates [58]. The authors also added 

that within the pyramidal cap, for /r > 0, the effective force per unit length is greater 

than the Peierls-Nabarro (P-N) force necessary to drive a TD out of GaN. As the 

pyramidal tip occurs throughout the growth process, TD filtering is facilitated all 

along, except for those TDs near the center of the nanostructure. Complete filtering of 

all underlying TDs was demonstrated for 50 nm and 80 nm diameter nanostructures 

[62]. The persistence of an axial TD to continue propagating axially may be 

explained by the attainment of a state of metastable equilibrium at the axial region. 

 



16 

 

Unfiltered, non-axial TDs which emerge with the nanostructure from the mask in 

Scheme A may similarly bend towards and terminate at the exposed free surface in 

order to relax the stress field associated with the TDs. The phenomenon is facilitated 

in pyramidal geometries as aforementioned and similarly for trapezoidal structures in 

Scheme B. This effectively reduces the TD density at the top part of the 

nanostructures and is even more pronounced for higher aspect ratios [63]. The 

dislocation reduction effect has been exploited in the III-nitrides for facet-controlled 

epitaxial lateral overgrowth (FACELO) for producing low TD density coalesced thin 

films [59, 64] as illustrated in Figure 1.5(b) and Figure 1.6(b). However, for the 

coalesced film arising from Scheme A, the mismatch strain energy is accommodated 

almost entirely by the epilayer since substrate compliance is effectively zero [56]. As 

such, it may be susceptible to cracking by thermal stress. For the coalesced film 

arising from Scheme B, a significant portion (~ half) of the mismatch strain energy is 

shared by the compliant substrate, and hence may be more resistant to cracking [55, 

56].  To surmise, the propensity of SAG for dislocation reduction can significantly 

improve crystalline quality in heteroepitaxial nanostructures. 

 

A well-known problem in the growth of InGaN is the existence of a thermodynamic 

solid phase miscibility gap over much of the alloy composition at typical growth 

temperatures (~700 to 800°C) which will be discussed in Section 2.3.3. This is 

attributed to the large difference in atomic spacing between GaN and InN [65, 66]. As 

a result, phase separation or compositional inhomogeneities are predicted and have 

been observed over a wide range of In composition x for InGaN bulk films, except at 

low x (close to GaN) or high x (close to InN) [16, 67, 68]. However, it has been 

reported that x can be increased without phase separation under strain relaxed 

conditions with the conventional approach of growing InGaN from the GaN end of 

the alloy [69]. As a nanostructured morphology is expected to favor strain relaxation 
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[57], an increase in x may be expected. The hypothesis is supported by a report from 

Kuykendall et al. in which complete composition tunability of InGaN was achieved 

with InGaN nanowires synthesized by halide chemical vapour deposition and 

indicated in Figure 1.7 [70].  

 

 

Figure 1.7 Complete composition tunability of InGaN nanowires grown by halide chemical 

vapour deposition. (a) SEM of the nanowire morphology with increasing In composition from 

images 1 to 13. (b) Corresponding XRD scans showing the 100, 002 and 101 XRD peaks from 

left to right. Co K radiation ( = 1.79026 Å) was used as the X-ray probe. (c) Lattice 

constants a and c derived from XRD as a function of In composition. (Reprinted from ref. [70])  

 

Recently, theoretical evidence showing that the nanowire configuration provides 

better strain release than thin films for complete compositional tunability of InGaN 

was obtained through atomic modeling [71]. These reports indicate that growth of 

InGaN as strain-relaxed nanostructures is a promising and valid approach to access a 

broader range of x without phase separation. Further, strain relaxed nanostructured 

morphologies may also mitigate undesired piezoelectric polarization effects 

characteristic of III-nitrides. Growth over semipolar or non-polar planes (see Section 

2) exposed in nanostructures can also help circumvent polarization effects. Further, 

due to the high equilibrium vapour pressure of N2 over InN, lower temperatures are 
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typically employed in InGaN growth to improve x, with the consequent reduction in 

structural quality [72]. This will be discussed in Section 2.3.4. This tradeoff may be 

mitigated by the nanostructured growth of InGaN. For instance, the increase in x 

favored by nanostructured growth may be used to offset the decline in x which would 

occur if increased growth temperature were employed to improve crystalline quality. 

The consequent improvement in crystalline quality of InGaN through nanostructuring 

schemes may also help to reduce the defect-related high background electron density 

which impedes p-type doping as discussed in Section 2.3.2. High concentration p-

type doping will greatly advance the progress in InGaN-based solar cells. 

 

A common approach to reduce reflection in solar cells is the application of optical 

coatings with refractive indices between that of the semiconductor and that of air [73]. 

However, an ideal coating would possess a continuously graded refractive index. 

Tapered semiconductor nanostructure arrays such as nanopyramids and nanocones 

with sharp tips can function as an effective medium with a gradual change in 

refractive index given by the weighted average of that of air and the material. 

Improved absorption over that of planar samples over a broad wavelength and 

incident angle range can be realized [74, 75]. For instance, GaN nanorod array on Si 

substrate can reduce reflection over the visible spectrum by a factor of about 3 to 4 

[76]. Typically, as-grown III-nitride nanostructures are faceted. By tuning the growth 

conditions in nano-SAG, pyramidal structures can be achieved. Nanopyramid arrays 

can have excellent light-trapping properties as light reflected off a facet onto a 

neighboring facet can have another chance of absorption. In fact pyramidal texturing 

of surfaces is a widely used technique for reflection control in c-Si solar cells [77]. 

 

Nanostructures, such as nanorods, nanopyramids, may be grown in a core-shell PV 

device architecture for enhanced charge separation. Here, the junction envelopes the 
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nanostructure. Due to the small lateral dimensions of the nanostructure, photo-

generated carriers are likely to lie in close proximity (within their diffusion length) to 

the junction space charge region where they can be separated and collected [78]. This 

reduces the sensitivity of the PV process to bulk defects which cause non-radiative 

recombination of photogenerated carriers before they can be collected. Undesired 

surface recombination effects may also be reduced [79, 80]. For instance, core-shell 

nanostructures utilizing “window” shells that exert a periphery surface field also 

reduce surface recombination which we have numerically shown to limit power 

conversion efficiencies in axial junction nanostructures [81]. Further, the height of 

core-shell nanostructures may be increased to improve absorption without removing 

the junction too far from the core and adversely impacting charge separation. 

 

By growing the semiconductor material into nanostructures, the amount of material 

needed for absorption is reduced due to lower reflection and improved light trapping. 

That is, the material is more efficiently utilized. The quality of material required may 

also be relaxed in core-shell nanostructure device architectures because efficient 

charge separation and collection may be effected even with lower carrier lifetimes. 

The reduction in material consumption and relaxation of quality requirements can 

translate to lower material costs.   

 

1.2.4.4. Plausible InGaN/Si Tandem PV Device Structures 

Two plausible InGaN/Si double junction tandem PV device structures based on 

Schemes A and B are shown in Figure 1.8. The working concept is similar to that 

already described in Section 1.2.2. A low electrical resistance, thin layer of AlN may 

be used as the buffer to prevent Ga meltback etching of Si during the growth of 

InGaN on Si as explained in Section 2.3.1.   
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Figure 1.8 Schematic diagram showing two plausible InGaN/Si tandem device structures 

based on Schemes A and B. The structure in (a) consists of a p-n junction top cell of core-shell 

InGaN nanostructures grown by nano-SAG (Scheme A) over a p-n junction Si bottom cell. In 

(b), the p-n junction top cell is formed by the coalesced InGaN epilayer grown via Scheme B 

over nanopillars of a p-n junction Si bottom cell. In both cases, the top and bottom contacts 

are formed by a transparent conducting layer and a metal layer respectively. 

 

The top cell in Figure 1.8(a) is based on p-n junction core-shell InGaN nanostructures 

grown by nano-SAG (or Scheme A) over a p-n junction Si bottom cell. p- and n-type 

doping in InGaN can be achieved during growth by Mg and Si doping respectively. p-

InGaN may be substituted by p-GaN with the advantages of more established p-type 

doping methods in GaN and a wider Eg in GaN which allows it to serve as a window 

layer thus reducing front surface recombination. The strain associated with the lattice 

mismatch of GaN on InGaN is alleviated by nanostructuring, use of thin GaN layers 

or composition grading from InGaN to GaN. A conformal transparent conducting 

layer coats the top surface of the device and connects the nanostructure tops to form 
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the front contact. A metal layer deposited on the back surface of the Si substrate 

forms the back contact.  

 

The coalesced InGaN epilayer arising from epitaxial lateral overgrowth in Schemes A 

and B may also be employed to form the top cell in InGaN/Si tandem solar cell 

architectures.  Figure 1.8(b) shows such a device structure arising from Scheme B. 

Junction formation, doping and electrical contact concepts are similar to that 

described for Figure 1.8(a). 

 

Due to the small contact area between the InGaN nanostructures and the underlying 

Si substrate in Scheme A, and between the InGaN epilayer and the underlying Si 

nanopillars in Scheme B, the series electrical resistance is inevitably larger than the 

thin film case. The impact of this on resistive power loss can be reduced by 

optimization of doping profiles (and hence conductivities) in the semiconductors in 

relation to dimensional and electrical properties considerations. It is important to note 

that while nanostructuring reduces contact area which increases resistive loss, the 

reduction can have a positive influence. In fact, a reduction in contact area between 

the lattice mismatched III-nitride and Si material system is beneficial as this improves 

the quality of the overgrown region, reduces the strain at the footprint of the 

nanostructures, and hence result in a lower dislocation density. The improvement in 

material quality from nanostructuring can improve electrical properties such as 

mobility and conductivity [82]. The benefits of a nanostructuring approach in general 

and specifically to the InGaN system have already been discussed in previous 

sections and offer an avenue to overcome InGaN material growth issues which have 

been plaguing the InGaN thin film community.  
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As discussed earlier, the region of InGaN nearest Si possesses higher TD and defect 

densities than regions away from the growth interface. The TDs and defects 

negatively influence the electrical properties of the device by presenting traps and 

non-radiative recombination centres. These hinder carrier transport and reduce device 

efficiency. However, it is important to note that these are inevitably generated in 

heteroepitaxial growth beyond the critical thickness and nanostructuring 

advantageously causes the rapid decay in TD and defect densities with distance away 

from the interface [53]. The undesirable effects of TDs and defects on charge 

separation are minimized by locating the active region (junction) away from the 

defects. Hence, taller nanostructures or thicker coalesced epilayers are advocated. In 

all, it is believed that the proposed InGaN/Si nanostructure schemes for photovoltaic 

applications are promising and worthy of pursuit.  

 

In the preceding sections, the advantages of InGaN as a promising full spectrum 

photovoltaic material and of Si as both an excellent substrate and an established 

photovoltaic material were examined. The successful integration of the two materials 

will form a key step towards the development of monolithic InGaN/Si tandem solar 

cells which are cost-effective, and offer broad solar absorption and high conversion 

efficiencies. However, heteroepitaxy of high quality InGaN films with diverse In 

content and adequate thickness is difficult because of thermal and lattice mismatches, 

compositional non-uniformity and phase separation, and temperature tradeoff 

between structural quality and In content. These challenges are compounded by Ga-

meltback etching of Si and unintentional nitridation of Si during growth. Two 

nanostructuring schemes, A and B, and appropriate device architectures were 

proposed and offer plausible solutions to overcome the aforementioned challenges.  
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1.3. Scope and Thesis Organization 

The nanostructured growth of InGaN on Si substrate to improve InGaN quality forms 

the focus of this work. The primary objective is to achieve nanostructured growth of 

InGaN on nano-templated Si substrates under different conditions in MOCVD and 

examine their characteristics in comparison with that of InGaN grown on non-

templated Si substrates. The nano-templated Si substrates may bear either dielectric 

nanomasks (Type A) or Si nanopatterns (Type B). As such, scalable nanopatterning 

techniques associated with Schemes A and B are also developed.  This thesis consists 

of seven Chapters and these are summarized as follows.  

 

Chapter 1 provides the introduction and motivation for the integration of InGaN with 

nanostructures on Si substrates for photovoltaic application. The relevance of 

nanostructuring to overcoming InGaN growth challenges is discussed. Further, the 

scope and thesis organization are outlined. In Chapter 2, a background of the III-

nitrides is first provided. The growth challenges of InGaN and traditional mitigation 

methods are then discussed. A review of novel growth strategies and work-to-date on 

III-nitrides nanostructures is also presented.  

 

In Chapter 3, the experimental methods employed in this work are described. These 

are Step and Flash
TM

 Imprint Lithography (S-FIL
TM

) for nanopatterning, MOCVD for 

III-nitride epitaxy, SEM and AFM for morphology characterization, XRD and TEM 

for structural characterization, and PL spectroscopy and reflectance spectroscopy for 

optoelectronic and optical characterization. In Chapter 4, nanopatterning techniques 

developed for the fabrication of growth templates on Si substrates are presented. 

These are classified into the two Schemes: (A) Fabrication of uniform, tunable aspect 

ratio nanoporous SiNy templates on AlN/Si(111) substrates, and (B) Fabrication of Si 
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nanostructure arrays of variable patterns and adjustable aspect ratio. To ensure a 

manageable scope, only Type A (nano-SAG) templates were selected for growth. 

 

In Chapter 5, the results of a baseline growth study of InGaN thin films on 

unpatterned AlN/Si(111) substrates are presented. Pre-requisite growth conditions 

and effect of growth temperature and pressure on InGaN film properties are discussed. 

Derived results were used for nanostructured growth. The characteristics of InGaN 

nanostructure array grown via nano-SAG on Type A templates for a set of conditions 

is then presented and discussed in comparison with control AlN/Si(111) substrate. In 

Chapter 6, a comprehensive study on the influence of growth temperature, pressure 

and other conditions on the In content, morphological, structural and PL qualities of 

nano-SAG InGaN is presented. A proof-of-concept InGaN/GaN MQW nanopyramid 

array is also demonstrated. The results are discussed in relation to growth mechanism 

and relevance to photovoltaic applications. Finally, Chapter 7 summarizes and 

concludes this thesis. Some suggestions for future work are also proposed. 
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Chapter 2 Background and Review of InGaN Growth  

 

2.1. Introduction 

In this Chapter, a background of the Group III-nitrides is first provided. Then, growth 

challenges of InGaN and traditional mitigation methods are discussed. A review of 

growth strategies and work-to-date on III-nitrides nanostructures is lastly presented. 

 

 

2.2. Structure and Characteristics of Group III-Nitrides  

InN, GaN and AlN are the three basic binary compound semiconductors of Group III 

nitrides used in semiconductor devices. These may be alloyed in various proportions 

to form ternary and even quaternary compound semiconductors to achieve specific 

properties. They can exist in zinc blende (or sphalerite) and wurtzite structures as 

seen in Figure 2.1. InGaN is a ternary alloy of InN and GaN. 

 

 

Figure 2.1 Schematic showing the atomic structures of the Group III nitrides. Zinc blende 

(left) and wurtzite (right). The cubic zinc blende structure may be positioned to show the 

stacking of the (111) close-packed planes (middle). In the [0001]-oriented wurtzite structure, 

two surfaces may be distinguished, namely the “Ga-polar face” and “N-polar face”.  
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Under ambient conditions, wurtzite is the thermodynamically stable form. The zinc 

blende structure consists of two interpenetrating face-centered cubic sublattices, each 

formed by one type of atom, offset by a quarter of the distance along a body diagonal. 

Each atom is positioned at the center of a tetrahedron, with its four bonded atoms (of 

the other type) forming the four corners. The stacking sequence for the (111) close-

packed planes is AaBbCcAaBbCc where the upper and lower case letters represent 

the Group III and V atoms respectively. In contrast, the wurtzite structure consists of 

two interpenetrating hexagonal closed-packed (HCP) sublattices, each formed by one 

type of atom, offset along the c-axis by 5c/8, where c is the axial lattice parameter. 

The basal lattice parameter is a. Like the zinc blende structure, each atom is 

tetrahedrally coordinated with four atoms from the other Group. However, the 

stacking sequence for the biatomic close-packed (0001) planes is AaBbAaBb in the 

[0001] direction as seen in Figure 2.2. A stacking fault (SF) arises when there is an 

error in stacking due to the insertion or removal of one close-packed layer. While the 

three-index (h’k’l’) Miller notation is used for the cubic zinc blende structure, a four-

index (hkil) Bravais-Miler index is usually employed for the hexagonal wurtzite 

structure. The redundant index i, equals – (h + k), indicate the equivalency of planes 

such as (2110) and (1120). For brevity especially in XRD, the index i may be dropped, 

and the four-index notation (hkil) abbreviated with three indices as (hkl), or (hk.l).  

 

In this work, the III-nitrides are grown in the wurtzite structure. Thus, four-index and 

three-index notations when applied to the III-nitrides refer to the hexagonal system. 

Due to the lack of an inversion plane perpendicular to the c-axis in the III-nitride 

wurtzite structure, two unique nitride surfaces may be distinguished in the [0001]- or 

c-oriented III-nitride crystal typically obtained in growth. The (0001) surface, or the 

surface with a [0001] surface normal, bears Group III elements at the center of the 

“upright tetrahedrons” and is known as the “Ga-face” or possesses Ga-polarity. The 
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opposite surface with a [0001] surface normal is the “N-face” or possesses N-polarity 

as seen in Figure 2.1. The distinction between the two surfaces is important because 

the III-nitrides exhibit significant polarization arising from spontaneous and 

piezoelectric polarizations. This greatly affects device performance. Even though 

spontaneous polarization is permitted in an ideal wurtzite structure, the values are 

considerably larger in the III-nitrides due to structural non-idealities (especially 

deviation of the c/a ratio from the ideal value of 1.633) [83, 84]. Further, large 

piezeoelectric coupling constants implies that the polarization effects are accentuated 

under in-plane strain. As the polarization is directed along or opposite the axial [0001] 

direction, there is a need to distinguish between the Ga- and N- polarity surfaces.  

 

 

Figure 2.2 Schematic showing the stacking sequence of the close-packed planes in zinc 

blende along the [111] direction (left) and wurtzite along the [0001] direction (right). 

 

For growth on Si substrates, Si(111) is preferred due to its trigonal symmetry which 

favors epitaxial growth of the (0001) plane in III-nitrides. The typical epitaxial 

relationship between them is given in Figure 2.3(a). Depending on growth conditions, 

non-polar or semipolar planes may be exposed as illustrated in Figure 2.3(b). Growth 

on such planes may eliminate or reduce undesired polarization effects such as the 
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quantum-confined Stark effect (QCSE) in MQWs which reduces output power in 

LEDs [85] or polarization-induced electric field that impedes carrier collection in 

solar cells [47]. In III-nitride SAG, the semipolar {1101} planes are easily exposed 

due to their stability and slow growth rate, and can benefit LED or PV applications.   

         

 

Figure 2.3 Schematic showing (a) the typical epitaxial relationship of the III-nitrides on 

Si(111) substrate, and (b) common planes of the wurtzite structure in III-nitrides. 

 

The bandgap Eg of the ternary wurtzite InxGa1-xN alloy as a function of indium 

composition x is given by Vegard’s Law and expressed in Equation (2-1).  

 𝐸𝑔 = 𝑥𝐸𝑔
InN + (1 − 𝑥)𝐸𝑔

GaN − 𝑏𝑥(1 − 𝑥) 
(2-1) 

where b is the bowing parameter taken as 1.43 [10], and Eg
GaN

 = 3.42 eV, and Eg
InN

 = 

0.7 eV at room temperature. Figure 1.2 shows the relation between Eg and x. The 

temperature dependence of the bandgap Eg(T) can be expressed in Varshni form as 

 𝐸𝑔(𝑇) = 𝐸𝑔(0) −
𝛼𝑇2

𝑇 + 𝛽
 

(2-2) 

whereT is the temperature in K, Eg(0) is the bandgap at T = 0 K in eV, and  and  

are Varshni parameters in eV/K and K respectively [86]. The values of these 

parameters for the binary members of the wurtzite III-nitrides are shown in Table 2-1. 
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Table 2-1 Bandgap Eg(0) (eV) at T = 0 K, and Varshni parameters  (meV/K) and  (K) [87]. 

Parameters InN GaN AlN 

Eg(0) (eV) 0.78 3.51 6.25 

 (meV/K) 0.245 0.909 1.799 

 (K) 624 830 1462 

  

The main epitaxy methods for the Group III nitrides are hydride vapour phase epitaxy 

(HVPE), plasma-assisted molecular beam epitaxy (PA-MBE), and metalorganic 

chemical vapour deposition (MOCVD). The advantage of HVPE is its capability of 

growing epitaxial thick GaN films with low defects at high growth rates and 

relatively low cost. High quality HVPE GaN templates or free-standing GaN 

substrates may be used for MOCVD and MBE to fabricate GaN-based devices with 

excellent performances. However, the growth of high quality InN and InN-containing 

InGaN layers in HVPE remains challenging due to the poor stability of InN and other 

growth challenges. In PA-MBE, the supply of N is assured through a plasma. Hence, 

lower substrate temperatures may be employed which may be helpful for increased In 

incorporation in InGaN. Further, an advantage of materials grown by MBE is its high 

purity since other elements (e.g. C) are not present in the sources. However, MBE is 

ceded in favor of MOCVD which has considerably better economics. MOCVD is 

capable of producing high purity, high quality materials with atomically abrupt 

interfaces for device applications. It is versatile and is suitable for large-scale 

production due to high growth rates and high yield. Hence, this growth method is 

employed in this work. For details, see Section 3.3. However, a notable conundrum 

exists for the growth of InGaN in MOCVD due to the use of NH3. While low 

temperatures favor higher In incorporation in InGaN, the cracking efficiency of NH3 

to form N radicals for bonding suffers. This is discussed in Section 2.3.4.  
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2.3. Challenges in InGaN Growth and their Conventional Mitigation  

Despite the benefits of InGaN for PV applications (See Section 1.2.1), its growth is 

markedly more challenging than that of other III-nitrides. In this section, we review 

the major challenges encountered and the conventional ways for mitigating them. 

 

2.3.1. Gallium Meltback Etching and Unintentional Nitridation of Silicon 

The direct epitaxial growth of InGaN (or any Ga-containing III-nitrides) on Si by 

MOCVD is challenging for two reasons. First, a strong chemical reaction between Ga 

and Si occurs at MOCVD temperatures of ~ 800°C or more, leading to roughening or 

degradation of the surface. This is a eutectic reaction often known as Ga meltback 

etching of Si in MOCVD [88, 89]. Surface pits and Ga droplets may be observed in 

such a scenario. Even if InGaN deposition were achieved through low growth 

temperatures (< 800°C), subsequent rise in temperature above ~ 800°C will result in a 

similar reaction. Second, even at lower growth temperatures, surface nitridation of Si 

can occur in the NH3 environment used in MOCVD. The consequent formation of 

amorphous or polycrystalline SiNy will lead to subsequent disordered growth and 

poor growth quality [90, 91].  A suitable buffer layer that prevents these reactions is 

thus warranted. While a multilayer of AlN/AlGaN/GaN is often employed to 

overcome the aforementioned problems and to reduce lattice mismatch [92, 93], such 

a buffer possesses relatively high electrical resistance, making it unsuitable for 

vertically integrated monolithic InGaN/Si tandem solar cells. Hence, a thin AlN 

protective layer has been used and shown to allow a low resistance contact to be 

achieved between the epilayer and Si [23-26, 94]. However, this comes at the expense 

of greater lattice mismatch which degrades structural quality. 
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2.3.2. Thermal Expansion and Lattice Mismatch 

III-nitrides are typically grown heteroepitaxially due to a lack of native substrates as 

discussed in Section 1.2.2. In heteroepitaxy, the epilayers and substrate are of 

different materials and thus possess dissimilar coefficients of thermal expansion 

(CTE). Upon growth completion and cooling down from the elevated growth 

temperatures, residual stress will build up due to a difference in contraction rate or 

mismatch in CTE. The CTE residual stress depends on the temperature difference, 

epilayer thickness, CTE mismatch and other mechanical properties of the materials 

and can modify the electronic properties of the epilayer. The CTE of the binary III-

nitrides and Si are tabulated in Table 2-2. Due to the smaller CTE of Si, the CTE 

residual stress in the III-nitride layer grown on Si is tensile. When the layer thickness 

reaches a critical value, cracking occurs to lower the total strain energy of the system. 

This value is known as the critical thickness for steady state propagation by cracks 

parallel to the interface. For instance, a GaN layer with thickness more than 1m 

grown over a AlN buffer layer on Si are susceptible to cracking [95]. A more in-depth 

treatment of cracking in brittle films is presented in ref. [96, 97].  

   

Table 2-2 Lattice constants and mechanical properties of the III-nitrides and Si(111) [98].  

Parameters InN GaN AlN Si(111) 

Lattice 

constants  

a (Å) 3.538 3.189 3.112 3.8403 

c (Å) 5.703 5.185 4.979-4.982 - 

Coefficient 

of thermal 

expansion 

a/a (K
-1

) ~2.85  10
-6

 5.59  10
-6

 4.2  10
-6

 
2.616  10

-6
 

c/c (K
-1

) ~3.75  10
-6

  3.17  10
-6

 5.3  10
-6

 

Poisson’s ratio  0.272 [99] 0.23 0.18-0.21 0.218 

Young’s modulus  E (GPa) 145 [100] 150 374 165.6 

 

Strain engineering and other growth strategies are thus essential to mitigate residual 

stress. For GaN-on-Si, strain engineering typically involves the insertion of low-
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temperature AlN (LT-AlN) interlayers within a buffer stack [101, 102]. As the LT-

AlN interlayer is (partially) relaxed, it disrupts the coherence between the underlying 

buffer layer and the subsequent layers. Due to the smaller lattice constant of AlN, 

AlGaN or GaN layers grown over LT-AlN are initially compressively stressed. 

Depending on the LT-AlN deposition temperature, its relaxation extent can be tuned 

to offset the intrinsic and thermal stress associated with GaN growth on Si. 8” crack-

free GaN-on-Si wafers with (0002) -rocking curve FWHM of 220 arcsec rivaling 

that of conventional GaN-on-sapphire has since been achieved for LED applications 

[103]. However, for applications where thick buffer and transition layers need to be 

avoided, other growth strategies may be needed to reduce the residual thermal strain.  

 

In addition to a difference in CTE, the III-nitride epilayer and Si substrate also 

possess different lattice constants. The mismatch f in the lattice constants is expressed 

in Equation (2-3), where as and af are the bulk in-plane lattice constant of the 

substrate and the film respectively. 

 𝑓 =
𝑎s − 𝑎f
𝑎s

 
(2-3) 

In the early stage of heteroepitaxy, the lattice of the epilayer is elastically strained to 

match the lattice constant of the substrate. If af < as, the epilayer is under in-plane 

tensile strain. Conversely, if af > as, the epilayer is under in-plane compression. The 

in-plane distortion is accompanied by distortion in the out-of-plane lattice parameter 

in accordance to Poisson’s ratio . This coherently strained epilayer is described as 

pseudomorphic. When the epilayer thickness is increased, strain accumulates. Above 

the critical layer thickness hc, the strain energy becomes sufficiently large to cause 

plastic deformation in the epilayer and the material relaxes through the generation of 

misfit dislocations at the heteroepitaxial interface. A dislocation that threads into the 

epilayer is termed a threading dislocation (TD). There are three types of TDs as 
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defined by the direction of the Burgers vector b relative to the propagation vector u or 

dislocation line: (i) edge dislocation (type a) with b perpendicular to u, (ii) screw 

dislocation (type c) with b parallel to u, and (iii) mixed dislocation with both edge 

and screw character. Edge and screw dislocations are structural accommodations of 

lattice twist and tilt respectively. Due to the possession of both edge and screw 

components, mixed dislocations accommodate both twist and tilt. See Figure 2.4.  

 

 

Figure 2.4 Schematic showing edge and screw dislocation and their correlation with lattice 

twist and tilt respectively. (Adapted from ref. [104]) 

 

In epitaxial [0001]-oriented III-nitride wurtzite films, TDs typically have a line 

direction of [0001]. Here, edge, screw and mixed dislocations have Burgers vector of 

1/3[1120], [0001] and 1/3[1123]. High TD densities are common in III-nitride 

heteroepitaxy due to the extreme difference in lattice constants as seen in Table 2-2. 

TD densities in the range of 10
8
 to 10

10
 cm

-2
 are typically encountered and pose 

challenges to efficient and high performance III-nitride device realization. The 

dislocations and defects present non-radiative recombination centres that lower 

carrier lifetime and reduce the quantum efficiency of photovoltaic devices. They may 

also function as undesirable scattering centres that limit carrier mobility. Further, 

nitrogen vacancies (VN) associated with dislocations have been proposed as possible 

donors that contribute to the high background electron density in InGaN [105, 106]. 

This compounds the pre-existing challenges associated with p-type doping by Mg 
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acceptors for device fabrication. Moreover, as TDs traverse the epilayer from the 

substrate to the top, shunt current flow along TDs can reduce device performance and 

lifetime [107, 108]. Hence, in view of the myriad of adverse effects associated with 

dislocation formed in heteroepitaxy, there is significant impetus to reduce the TD 

density and improve the quality of the grown III-nitride layers. Various dislocation 

reduction techniques involving selective area growth and epitaxial lateral overgrowth 

have since been developed which is discussed in Section 2.4.       

 

2.3.3. Composition Inhomogeneity and Phase Separation  

Due to the large difference in lattice parameters between GaN and InN a solid phase 

miscibility gap exists in InGaN [65, 66]. The extreme lattice mismatch of ~ 11% is a 

strong driving force for GaN and InN to “unmix” in InGaN. Depending on the In 

content x in InxGa1-xN and the strain state of the film [109, 110], minor compositional 

fluctuation or complete phase separation by spinodal decomposition can occur. 

 

Compositional fluctuation within InGaN or non-random distribution of In atoms 

within the alloy has been postulated to arise from a few mechanisms, all of which act 

to reduce the energy of the system. These include (i) composition pulling effect in 

InGaN grown on GaN where x is low near the InGaN/GaN interface but increases 

with InGaN thickness to reduce deformation energy arising from lattice mismatch 

with GaN [111, 112], (ii) strain induced island formation in which islands with a 

larger misfit component preferentially nucleate because the nucleation barrier is 

lower [113], (iii) surface segregation and [0001] chemical ordering of the Group III 

sublattice to minimize the number of In-N bonds since the bond strength of In-N 

bonds is notably weaker than that of the Ga-N bond [114, 115], and (iv) binodal  and 

spinodal decomposition [65, 116]. It is likely that some or all of these mechanisms 

play a role in the formation of nanoscale In-rich clusters embedded within InGaN. 
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These structures manifest as localized bandgap minima, favoring radiative 

recombination and function as luminescent centers. Hence, despite high TD densities, 

InGaN/GaN MQW devices still exhibit strong emission due to carrier localization 

[117, 118]. While compositional fluctuation likely affects photovoltaic performance, 

the effect is unlikely to be large, provided major phase separation is absent. 

 

Unfortunately, phase separation by spinodal decomposition can occur in InGaN, 

especially at mid-In compositions [16, 67]. In spinodal decomposition, spontaneous 

up-hill diffusion of In atoms leads to the formation of two phases with high and low 

In content to reduce the system’s free energy. Using a modified valence force field 

model, Ho et al. has calculated the binodal and spinodal curves in the InN-GaN phase 

diagram [65] as seen in Figure 2.5(a). The binodal curve defines a region of 

composition and temperature for a solution across which a transition occurs from 

miscibility of the components (region above the curve) to metastability or instability 

(region below it). For a typical growth temperature of 800°C, the equilibrium 

solubility of In in GaN is less than 6%. The spinodal curve defines the limit of 

stability of a solution. Within the curve, equilibrium occurs via phase separation by 

spinodal decomposition. By encouraging non-equilibrium growth conditions, phase 

separation can be suppressed to obtain higher In content single phase InGaN [68, 

119]. However, obtaining high quality InGaN remains a challenge. Phase separation 

is highly undesired because the much lower Eg regions can greatly limit photovoltaic 

performance of solar cells by acting as recombination centers that decrease the short-

circuit current, and by pinning down the open-circuit voltage of the device [120].  

 

By incorporating the effect of strain in the calculation of the InN-GaN phase diagram, 

Karpov et al. showed that phase separation can be suppressed by elastic strain [110]. 

This accounts for the ability to produce InGaN/GaN MQWs without phase separation 
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for x > 0.2. Tessarek et al. employed a more consistent set of elastic constants [121] 

to calculate the phase diagram under varying strain as given by Figure 2.5(b). This 

shows that increasing strain reduces the critical temperature (maximum of the 

spinodal line), decreases the binodal and spinodal regions, and shifts them towards 

higher x and lower temperature. InGaN with low to mid x can thus be grown without 

phase separation. While the case for InGaN/GaN MQWs in LEDs or laser diodes is 

fully justified, its case in PV is tenuous. This is because a combined InGaN layer 

thickness of a few hundred nanometers is required for effective optical absorption but 

implementation of InGaN/GaN MQWs or superlattices (SL) to increase the total 

absorption thickness eventually degrades crystal quality [46].  

 

 

Figure 2.5 Theoretical phase diagram for the InN-GaN system for (a) the bulk unstrained case 

[65], and (b) varying extent of strain [121]. 

 

2.3.4. Temperature Tradeoff Between Good Structural Quality and High 

Indium Content 

The phase diagrams in Figure 2.5 indicate that phase separation in InGaN could 

theoretically be overcome by using temperatures higher than the maximum of the 

spinodal line. However, a conflict arises due to the high equilibrium vapour pressure 

of N2 over InN even at normal growth temperatures [72]. This is much higher than 

that of AlN and GaN as seen in Figure 2.6(a). High temperatures would result in the 
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rapid dissociation of InN due to the weak In-N bond, and a sizable reduction of the In 

content in InGaN. An analysis of the main reaction pathways following the 

adsorption of In atoms on the growth surface is illustrated in Figure 2.6(b).  

 

Figure 2.6 (a) Equilibrium vapour pressure of N2 over AlN, GaN, and InN (reprinted from ref. 

[122]); (b) Reaction pathways of adsorbed In during InGaN growth (adapted from ref. [123]). 

 

The processes involved are (i) In incorporation into the solid ternary InGaN alloy, (ii) 

In incorporation into In metal droplets, and (iii) In desorption from the growth surface 

due to non-incorporation of In or breaking of existing In-N bonds [123]. The 

respective flux associated with each process in atoms/cm
2
/s is Fs, Fm and Fd. For an 

incident flux of trimethylindium (TMIn) Fin, the mass balance equation below applies 

 𝐹in = 𝐹s + 𝐹m + 𝐹d 
(2-4) 

The residence lifetime  of In on the growth surface can be expressed as  

 𝜏 = 𝜏0exp(
𝐸d
𝑘B𝑇

) 
(2-5) 

where 0 is fixed for a given set of conditions, Ed is the activation energy for In 

desorption, and k is the Boltzmann constant . Since Fd is inversely proportional to ,  

 𝐹𝑑 ∝ exp(−
𝐸𝑑
𝑘B𝑇

) 
(2-6) 

Due to the exponential temperature dependence, In desorption is significant at high 

growth temperatures. Further, the relative stability of Ga atoms compared to In atoms 
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on the nitride surface (or weaker bond strength of In-N compared to Ga-N) implies 

that TMIn flow rates much higher than trimethylgallium (TMGa) flow rates are 

necessary to increase the chances of In incorporation into the growing lattice.  

 

From the above analysis, higher In content InGaN is favored with high TMIn flow 

rates and low growth temperatures. However, selection for low temperatures is 

opposed by other considerations which advocate otherwise [124]. First, as mentioned 

earlier, phase separation could theoretically be overcome or reduced by employing 

temperatures greater than that of the binodal and spinodal curves in the phase diagram. 

Second, structural quality would likely be improved with higher temperatures due to 

the reduction of carbon-related impurities, nitrogen vacancies, and other structural 

defects [125-127]. Third, and perhaps most critical in MOCVD of III-nitrides, is the 

necessity for higher temperatures (> ~ 800°C) to increase NH3 decomposition 

efficiency due to the strong N-H bonds [98]. The dissociation of NH3 is needed to 

provide the N atoms for bonding in III-nitrides. A deficiency of N atoms in a situation 

where there is an abundance of In atoms adsorbed onto the growth surface can lead to 

the formation of small In metal droplets. When the droplets reaches a critical size and 

become thermodynamically stable, they can getter In atoms on the surface and 

compete with In incorporation in the solid InGaN phase [123]. This possibly explains 

reports of In droplets in the growth of high In content InGaN at low temperatures 

[128-130]. Fourth, higher temperatures are associated with greater surface mobility of 

adatoms which promote better surface coverage and two-dimensional film growth. 

 

To summarize, the conflicting requirement on growth temperature is a major 

consideration in the growth of InGaN. Typically, a compromise has to be made 

between good structural quality and high In content. Growth strategies that mitigate 

such a conundrum would greatly advance progress in the growth of InGaN. In 
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particular, techniques that improve or maintain In incorporation with the use of higher 

temperatures is highly desired in view of the advantages of high-temperature growth. 

 

2.4. Novel Growth Strategies  

2.4.1. Development of New Growth Methods 

New growth methods of InGaN are typically based on modified MBE techniques and 

employ non-equilibrium conditions to achieve single phase high In content InGaN 

within the miscibility gap. One such method called energetic neutral atom-beam 

lithography and epitaxy (ENABLE) has recently been reported [24, 27, 131]. The 

growth process occurs in a standard MBE ultra-high vacuum (UHV) environment 

with conventional Knudsen cells as the metal sources but employs a high-intensity 

energetic beam of neutral nitrogen atoms as the nitrogen source. By exposing a 

heated substrate to the reactive N atom beam flux and co-evaporated Ga and/or In 

metal fluxes, InGaN films can be grown. The energetic N atoms activate film growth 

even at low temperatures (450 - 700°C). This reduces In desorption and dissociation 

of InN. Due to the large N atom kinetic energy and flux, InxGa1-xN can be grown at 

high rates (~ 2 m/h). These favor non-equilibrium conditions allowing high In 

content single phase InxGa1-xN (x up to ~ 0.35) on Si(111) to be grown. The results 

are promising but high n-type carrier concentration of ~ 9  10
20

 cm
-2

 greatly impedes 

p-type doping [132]. Structural quality improvement is also warranted.  

 

Metal-modulated epitaxy (MME) is a III-nitride growth technique based on MBE. In 

MME, the metal and dopant cell shutters are open and closed at regular intervals 

while the active nitrogen flux supplied by plasma remains constant. Highly metal-rich 

fluxes are used to exploit the enhanced adatom diffusion facilitated by an excess 

metal layer [133] to achieve abrupt interfaces. While excess metal would rapidly form 

droplets in conventional MBE, this is consumed into the film due to periodic closing 
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of the metal and dopant cells. Low growth temperature reduce adatom desorption and 

favor non-equilibrium conditions allowing thin (< 60 nm) InxGa1-xN films throughout 

the miscibility gap to be grown [133]. In addition, very high hole concentrations in 

the order of ~ 10
19

 cm
-3

 has been achieved in InxGa1-xN for x = 0 to 0.22 [134]. This is 

more than an order greater than the highest reported value [135]. However, as the 

growths were performed on GaN templates or AlN/sapphire wafers, the results may 

differ for growth on Si. The latter is expected to be more challenging due to 

unintentional nitridation of the Si surface and Ga meltback etching of Si [132]. 

 

The above non-equilibrium growth methods are highly promising means to grow 

single phase InxGa1-xN with x within the solid phase miscibility gap. However, they 

do not address the fundamental problem of high dislocation and defect densities 

associated with heteroepitaxy of InGaN on Si substrates.  

 

2.4.2. In-situ Silicon Nitride Masking 

In-situ silicon nitride (SiNy) masking is a threading dislocation (TD) reduction 

technique first reported by Vennegues et al. for GaN growth on sapphire [136]. Here, 

the growth is interrupted by a short-duration deposition of a thin, discontinuous SiNy 

mask layer (a few nanometers thick). The growth is then resumed. Due to the lower 

sticking coefficient of the Ga precursor on SiNy, growth occurs only on the unmasked 

regions of the surface. This forms GaN islands which overgrow over the mask and 

eventually coalescence to form a continuous layer. A transition from two-dimensional 

growth mode to three-dimensional growth mode is thus effected. With this method, 

TD densities (TDDs) as low as mid 10
7
 cm

-2
 has been achieved [137]. In-situ SiNy 

masking has also been combined with AlN/AlGaN buffer stacks for GaN growth on 

Si(111) substrates [138]. This mechanism of TDD reduction is similar to epitaxial 

lateral overgrowth (ELO). The SiNy mask blocks TDs from propagating into the 
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overgrown layer. TDs that emerge from the unmasked regions tend to bend in the 

(0001) plane where TDs of opposite Burgers vector annihilate each other. 

 

In addition to TDD reduction, the method is also found to reduce tensile stress since it 

favours the growth of larger size crystallites which have less grain boundaries, the 

latter being a source of intrinsic tensile stress [139]. In-situ SiNy masking is a simple 

non-lithographic method that has been used almost exclusively for GaN growth. Its 

use for InGaN films has yet to be demonstrated but may function similarly.  

 

2.4.3. Selective Area Growth 

Selective area growth (SAG) involves the localization of material growth to specific 

regions of the substrate by the use of a growth mask. Growth selectivity is achieved 

by the destabilization of the solid phase (nucleation) on the mask surface while 

permitting growth on the unmasked region. The mask material is usually a dielectric 

e.g. SiO2 or SiNy, although metal masks have also been used. SAG of the III-nitrides 

by MOCVD was first reported by Kato et al. for GaN on GaN/sapphire substrates 

using a stripe-patterned SiO2 mask [140]. Hiramatsu et al. [141] and Zheleva et al. 

[60] have found that the morphology of the SAG structure depends on the shape of 

the mask opening, its orientation with respect to the crystallographic orientation of 

the underlying layer, and growth conditions. For stripe mask openings patterned 

along the <1100> direction of the underlying GaN, an increase in growth temperature 

T or a decrease in reactor pressure P leads to a change in morphology of the 

overgrown GaN from a triangular shape with {1122} sidewalls to a rectangular shape 

with {1120} sidewalls as seen in Figure 2.7. However, for stripes along the <1120> 

direction, the shapes remain triangular with {1101} sidewalls regardless of T and P. 

The phenomenon may be explained as follows.  
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Figure 2.7 Morphological changes in SAG of GaN using <1100> mask stripe openings under 

different reactor pressures and growth temperatures. (Reprinted from ref. [141]) 

 

The shape of the SAG structure is governed by the slowest growing crystallographic 

plane according to Wulff’s theory [142]. This is in turn determined by the plane 

stability which depends on the termination of the planes (either N-terminated or Ga- 

terminated) and the dangling bond density (DB) of the plane [141] as seen in Figure 

2.8. In general, N-terminated planes are stable under MOCVD conditions of high 

V/III ratio, especially with high P or low T, and present the slowest growth rate. This 

has been attributed to H-passivation of the N-terminated planes [143-146]. Thus, for 

Ga-polar growth, the H-passivated, N-terminated planes of {1101} and {1122} are 

observed under high P or low T. When passivation of these planes is not effected in 

the reverse growth conditions, the planes with the lowest DB density, and thus the 

greatest stability, will determine the crystal morphology. 
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Figure 2.8 Morphological changes and relative plane growth rates in SAG of GaN as a 

function of growth pressure and temperature for mask stripe openings along the (a) <1120>, 

and (b) <1100> directions. Respective atomic configurations are shown in (c) and (d). 

(Adapted from ref. [141]) 

 

In addition to elongated stripes, SAG of hexagonal GaN pyramids bound by {1101} 

facets has also been realized using hexagonal [147] and circular [60] mask openings. 

A major benefit of SAG is associated with the three-dimensional morphology of the 

structures. Not only is the active device area increased, the exposure of semipolar or 

non-polar facets allows the fabrication of devices with reduced undesired polarization 

effects [148, 149]. Further, instead of confining growth to within the mask openings, 

some form of epitaxial lateral overgrowth (ELO) is typically allowed. In such a case, 

the mask effectively prevents the propagation of TDs into the overgrown region. 

Moreover, for triangular or trapezoidal SAG structures (pyramids or stripes), many of 

the TDs originally propagating along the c-axis in the openings are observed to bend 

towards the lateral facets [59, 60, 150]. The top part of the structure is thus of 

improved quality. In all, TDD reduction is achieved as seen in Figure 2.9.  
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Figure 2.9 Distribution of defects in SAG of (a) GaN stripe and (b) GaN pyramid. LEO, 

synonymous with ELO,  refers to lateral epitaxial overgrowth (Reprinted from ref. [60]) 

 

We note that III-nitride SAG is performed mainly with GaN due to its role in device 

applications and as a growth template. However, it may be applicable to InGaN too. It 

has been shown that among the common wurtzite planes, the semipolar planes of 

{1101} and {1122} exhibit the highest indium incorporation x in InxGa1-xN [151, 152]. 

This has been associated with the favorable energetics of the planes for 

accommodating In atoms [115, 153].  The higher x may help to alleviate the 

constraints associated with the temperature budget in InGaN growth. Further, the 

segmentation of the SAG structures may also relieve thermal residual stress. 

 

2.4.4. Epitaxial Lateral Overgrowth (ELO) 

Epitaxial lateral overgrowth (ELO) may be performed after SAG with the aim of 

coalescing the SAG structures to obtain low TDD continuous films. This combinatory 

approach is known as two-step ELO or facet-controlled epitaxial overgrowth 

(FACELO) [59, 64]. In III-nitrides, ELO is performed almost exclusively with GaN 

due to its use as a growth template. Variants of ELO includes pendeo-epitaxy (PE) 

which involves lateral suspended growth from elevated GaN pillars to produce GaN 

with low and uniform dislocation density [154, 155], maskless pendeo-epitaxy where 

the mask in PE is removed to reduce crystallographic tilt, thermal stress and impurity 

incorporation [156, 157], and maskless ELO [158, 159] as illustrated in Figure 2.10.  
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Figure 2.10 Schematic showing some common TDD reduction techniques. (a) Facet-

controlled epitaxial lateral overgrowth, (b) pendeo-epitaxy, (c) maskless pendeo-epitaxy, and 

(d) maskless epitaxial lateral overgrowth. 

 

However, while ELO and its variants are effective in reducing TDD, it does not 

address the issue of phase separation and the temperature tradeoff between crystal 

quality and In content in the growth of InGaN. In contrast, SAG structures which 

expose the semipolar planes show not only reduced TDDs and increased active 

device area, but also exhibit reduced polarization effects and increased In content. 

 

2.4.5. Nanostructured Growth 

In Sections 2.3 to 2.4, we reviewed the challenges associated with InGaN growth, the 

conventional mitigation approaches, as well as other novel methods. However, the 
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techniques, with the exception of SAG, are unable to tackle all the issues concurrently. 

Conversely, we have shown in Section 1.2.4 the benefits and potential of 

nanostructuring in overcoming all the challenges. In this section, we review the 

bottom-up growth of III-nitride nanostructures. These may be broadly classified into 

non-templated (e.g. self-assembly) and templated (e.g. lithography) approaches.  

 

2.4.5.1. Non-templated Nanostructure Growth  

In the non-templated growth of nanostructures, no prior patterning step is performed. 

The formation of nanostructures relies on statistical formation of nucleation centres 

on the substrate. A vapour-liquid-solid (VLS) mechanism is typically involved in 

which the nucleation sites may be defined by the self-assembly of foreign catalysts 

(e.g. Au droplets), or by droplets of the Group III metal formed by specific growth 

conditions. We note that foreign catalysts can lead to contamination of nanostructures.  

 

MBE is commonly used for the non-templated growth of III-nitride nanostructures 

[160]. Through this, good crystalline quality AlN [161], GaN [162-164] and nearly 

intrinsic InN [165, 166] nanowires (NWs) relatively free of extended defects have 

been obtained on Si and sapphire via VLS mechanisms. MBE has also been used for 

growing InGaN nanostructures and may be well-suited to access the entire 

composition range due to its relatively low growth temperatures. Single phase, single 

crystalline faceted InGaN nanopillars well-oriented along the c-axis with blue and 

green PL have been grown on p-type Si(111) in RF-MBE [167]. Wu et al. further 

observed that InGaN RF-MBE grown on c-plane sapphire NWs are dislocation-free 

and exhibit further strain relaxation with growth duration as indicated by the red-shift 

in band edge PL from 559 to 582 nm [168]. However, as MBE growth of III-nitride 

nanostructures on Si is not exactly epitaxial due to formation of amorphous SiNy at 

the Si interface, NW disorientation, merging and formation of grain boundary 
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dislocations can result [169]. Basal stacking faults (SFs) and nanoscale In content 

variation have also been detected. By reducing the growth temperature, In 

incorporation of InGaN nanocolumns grown on Si(111) by PA-MBE can be increased 

[170]. Indium is most easily incorporated into NW tops due to top-to-bottom 

diffusion of In atoms [169, 171]. Non-uniform interwire and intrawire In distribution 

were also reported for InGaN NWs [172]. While, the high SF densities in the NWs is 

reduced with higher growth temperatures [173], reduction in In content ensues.  

 

Using X-ray fluorescence and energy-dispersive X-ray spectroscopy, it was found 

that InGaN NWs may comprise a Ga-rich shell and an In-rich core [174]. The natural 

non-polar NW core-shell structure can benefit PV applications. Very high In content 

InxGa1-xN (x~0.86 to 1) NWs with PL emission from 1500 to 1920 nm have also been 

grown by PA-MBE on Si(111) [175]. Further, In0.86Ga0.14N/In0.79Ga0.21N multiple 

quantum disks (MQDs) have been grown on In0.79Ga0.21N NWs with PL emission 

tunable by well thickness. However, heterostructures are more commonly fabricated 

upon GaN NWs and invariably for LED applications. p-i-n heterostructures [176], 

InGaN/GaN MQDs (or MQWs) [177-179] and insertions [180-182] have also been 

fabricated on GaN nanostructure arrays for variable color light emission. 

 

In addition to PA-MBE, chemical vapour deposition (CVD) has been employed to 

grow III-nitride NWs. Using evaporated Au as a catalyst on p-type Si(100) substrates, 

InN NWs have been grown via the VLS reaction [183]. Also, helical InGaN NWs 

consisting both hexagonal and cubic phases have been grown via Au-catalyzed CVD 

on Si substrates by Cai et al. [184-186]. However, unlike nanostructures grown in 

MBE which bear a pseudo-epitaxial relationship with the Si substrate, CVD NWs are 

randomly oriented in a mesh-like network. Despite this, complete compositional 
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tunability of InGaN NWs has been achieved using catalyst-free low temperature 

halide CVD by Kuykendall et al. [70] as discussed in Section 1.2.4.3.  

 

HVPE has been used to grow c-axis oriented, single-crystalline GaN nanorods with 

high spatial density on sapphire and Si substrates [187-190], as well as, c-axis 

oriented InxGa1-xN nanowires on Si(111) [191] and c-plane sapphire substrates with x 

up to 0.2 [192]. x was limited to 0.2 due to the consumption of the InCl3 precursor by 

H2 in the reactor. Nanowires are so termed due to their much higher aspect ratios than 

nanocolumns. By introducing TMIn as the In precursor in metal-organic HVPE (MO-

HVPE), dislocation-free In0.25Ga0.75N/GaN MQW nanorod arrays (NRAs) were 

grown [193] and fabricated into high efficiency and brightness blue LEDs [194]. 

Separately, InxGa1-xN nanocolumns with varying x (0 to 0.57) have been grown via 

plasma-enhanced evaporation on amorphous SiO2 substrates[195] . While the 

nanocolumns are hexagonal and approximately normal to the substrate surface at low 

x, the order, dimensional uniformity and crystallinity degrades as x increases.  

 

Metal-catalyzed [196, 197] and catalyst-free MOCVD [198, 199] have been used to 

grow GaN NWs. For the latter, an in-situ deposited SiNy layer is found to contribute 

to GaN seed formation for NW growth. VLS growth of InN by In self-catalysis in 

MOCVD has also been performed [200]. While metal-catalyzed MOCVD synthesis 

of GaN and InN NWs has been achieved, growth of InGaN NWs by the same 

approach is difficult [201]. This is because when In and Ga are present in the VLS 

metal droplet, In metal is preferentially reabsorbed back into the droplet. As such 

only InxGa1-xN with low x (  0.05) is formed.  The MOCVD growth of III-nitride 

nanostructures by a templated approach is thus more frequently employed. This also 

allows better dimensionality control in contrast to non-templated approaches where 

the nanostructures are highly disordered and exhibit a broad range of sizes.  
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2.4.5.2. Templated Nanostructure Growth  

While non-templated approaches allow nanostructures to be easily grown, such that 

their characteristics can be studied, control over their arrangement and dimensions is 

desired. This is because these directly influence the structural [54], optical [179, 202] 

and electronic properties [203]. A templated approach which provides size-, shape- 

and site-control, would thus allow these properties to be tuned. Templated epitaxial 

growth of nanostructure may be broadly classified under two schemes, (A) nano-SAG 

from recessed regions of the substrate as delineated by a nano-featured SAG mask, 

and (B) nanoheteroepitaxy from elevated regions of a nanopillar substrate. These are 

termed Schemes A and B respectively and were discussed in Sections 1.2.4.1 and 

1.2.4.2. Nano-SAG is typically combined with MBE or MOCVD. 

 

2.4.5.2.1. Nano Selective Area Growth (Nano-SAG or Scheme A)  

Nano-SAG in RF-MBE has largely focused on the growth of GaN nanocolumns and 

InGaN/GaN heterostructures. This was first achieved by Sekiguchi et al. using a 

focused ion beam (FIB) patterned nanohole Ti mask to fabricate InGaN/GaN MQW 

nanocolumn arrays [204]. The nanocolumns were single crystalline and bears a 

hexagonal cross-section with vertical (1100) side facets. A high growth temperature ~ 

900°C was critical for SAG. This is facilitated by low N2 flow rate which enhances 

desorption and diffusion of Ga from/on the nitridated Ti mask, and effectively 

suppress nucleation on it [205]. The GaN nanocolumns appeared free of TDs. While 

GaN on sapphire substrates are typically used in the MBE nano-SAG of GaN, nano-

SAG of GaN on AlN buffered Si substrates using SiNy masks has also been achieved 

with essentially perfect selectivity [206]. Pores with diameters < 500 nm produced 

single nanowires with symmetrically faceted tips but larger openings yielded material 

appearing to comprise of coalesced nanostructures. The effect of temperature, III/V 
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flux ratio, mask geometry have also been examined [207, 208]. Sekiguchi et al. 

further showed that by increasing the diameter of InGaN/GaN MQW nanocolumn 

within a fixed period array, a change in beam shadow effect results [209]. This was 

utilized for increasing In composition and hence elongating the emission wavelength. 

Further, by tuning the growth condition, quantum dots can be fabricated at the 

pyramidal apex of the InGaN/GaN nanocolumns [210]. Emission shifts likewise with 

nanocolumn diameter and was found to exhibit high PL internal quantum efficiency 

(~ 48 to 62%). This was attributed to the high quality of the GaN nanocolumn since 

TDs in the lower sections bend towards the sidewalls and do not propagate to the 

upper active layer.  

 

Work on nano-SAG in MOCVD is more extensive and has been performed with GaN, 

InN and InGaN. Selective area epitaxy of InGaN nanorings and nanodots on 

GaN/sapphire substrate using  a nanoporous SiO2 mask was first reported by Chen et 

al. [211]. The mask (~ 80 nm diameter pores) was patterned by anodization of 

aluminum oxide (AAO). During MOCVD, the edges of the SiO2 mask serve as 

heterogeneous nucleation centers where the free energy of the nucleus is lower than 

that of a flat surface, leading to the formation of InGaN nanorings which follow the 

contours of the SiO2 pores. The noncapped InGaN nanorings exhibited strong PL at ~ 

420 nm at room temperature due to strong confinement of excitons. By tuning the 

AAO process, the SiO2 mask feature size can be correspondingly changed, allowing 

InGaN nanostructure diameters to be varied from 35 to 250 nm [212]. Further, by 

controlling the growth duration, high density arrays of nanorings, faceted nanodots 

and nanoarrows can be obtained. AAO-patterned SiO2 masks was also applied to the 

nano-SAG of GaN nanorod arrays [58, 213-215] and to realize InGaN/GaN 

heterostructures [216, 217]. MQW PL intensity higher than planar structures was 

obtained and attributed to improved light extraction and improved crystal quality. 
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Further, increased In incorporation was achieved due to strain relaxation. The reports, 

along with that discussed in Section 2.4.3 for SAG support the validity of the 

proposed approach in this work. Likewise, AAO-patterned SiO2 masks has been 

applied for nanoscale lateral epitaxial growth of GaN films on Si(111) [61] and 

sapphire substrates [218] leading to low TDD ~ 10
7
 cm

-2
.  

 

Other lithography methods have been employed in nano-SAG. Ultra-high density 

InGaN-based quantum dots (diameter ~ 22 – 25 nm) have been achieved with diblock 

copolymer lithography [219]. Electron beam lithography (EBL)  has also been used 

for SiO2 mask patterning to form highly uniform and periodic line and hole arrays 

with sizes down to 52 nm and pattern size deviation < 4% [220, 221]. Nano-SAG of 

horizontal InGaN nanowires and nanodots/nanorings thus fabricated on GaN/sapphire 

possess high optical quality and PL peak emission from 450 – 500 nm. Compared to 

random nanodots, size-homogeneous nanodot arrays (Figure 2.11(a)) produce 

narrower PL emission [221, 222]. Patterning in SAG is discussed in ref. [223].  

 

 

Figure 2.11 SEM images of nanostructures grown via nano-SAG. (a) InGaN nanodot array 

[221], (b) InGaN/GaN MQW LED nanorod array [224], and (c) InGaN/GaN MQW LED 

nanopyramidal array [225].  

 

On a separate front, highly uniform, high aspect ratio, vertical GaN nanowire arrays 

with excellent long range order have been grown by pulsed MOCVD using a SiNy 

mask patterned by interferometric lithography [49]. Alternate introduction of the 

Group III and V precursors presents a low V/III ratio and leads to a VLS mechanism 
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that significantly increases the vertical-to-lateral growth rate ratio.  Despite the 

presence of TDs beneath the growth mask, none were observed in the NWs. This 

presents a scalable method for the fabrication of high quality GaN NW arrays. 

Alternatively, pulsing of just the NH3 precursor  can be performed [226]. Pulsed 

MOCVD has also been attempted for nano-SAG of InGaN via AAO-patterned SiO2 

masks on sapphire, and a-plane GaN/sapphire [227]. The Ga precursor was 

introduced intermittently to avoid nucleation on the mask due to the low growth 

temperatures. However, only low aspect ratio nanostructures were obtained.  

 

Pulsed MOCVD has been combined with nanoimprint lithography (NIL) patterned 

SiO2 SAG mask to form GaN nanocolumn arrays [228, 229]. When coalescence 

overgrowth is facilitated, it was showed that nanoporous masks with the smallest 

hole/spacing ratio have the lowest TDD. InGaN/GaN QWs have been grown on the 

sides and tops of pulsed deposited GaN nanorods to form m-plane core-shell and c-

plane disc structures [230, 231]. Here, QWs are narrower and In content higher at the 

m-plane sidewalls than the c-plane tops. Further, nanorods with shorter height, greater 

cross-sectional size, or larger pitch have longer emission wavelengths. LEDs based 

on these InGaN/GaN QW nanorod arrays ( Figure 2.11(b)) have been fabricated and 

show a smaller blue shift with increasing injection current than planar devices due to 

reduced quantum-confined Stark effect (QCSE) in the non-polar m-plane QWs [224]. 

LED core-shell nanorod arrays have also been demonstrated [232, 233]. 

 

Nano-SAG of high aspect ratio vertical GaN nanorod arrays can also be achieved 

under continuous flux conditions in MOCVD. Bergbauer et al. obtained N-polar GaN 

nanorods on patterned sapphire substrate using such an approach [234, 235]. The high 

aspect ratio was enabled by low V/III ratio and high H2/N2 ratio. Higher temperatures 

also helped [236]. Further, silane injection was reported to dramatically enhance 
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vertical growth rate of Ga-polar GaN nanorods [237, 238]. Choi et al. found that the 

anisotropy in growth rate is increased with low NH3 and Ga precursor flow rates and 

that SAG efficiency hinges on pattern fill factor [239]. Increased NH3 flux was 

accompanied by greater lateral growth and dominance of the {1102} and {1101} 

facets. Ga-polar GaN nanowires with diameter as small as 50 nm were achieved.  

 

Surface polarity plays a crucial role on the morphology of nanostructures [143].  For 

Ga-polar GaN, the inclined {1101} planes are terminated by N atoms. Under high 

V/III ratios, these are passivated by H, which leads to a stable surface with low 

growth rates, and hence pyramidal structures bound by them. The reduced 

temperature growth of InN and InGaN requires high NH3 flow rates or high V/III 

ratios to compensate for the low NH3 dissociation efficiency to avoid In droplet 

formation. This explains the nanopyramidal morphology obtained in nano-SAG of 

InN and InGaN on Ga-polar growth surfaces [203, 212, 240]. For GaN nanostructure 

growth (of both polarities), the H-passivation effect is relieved under Ga-rich, low 

V/III ratio conditions, thus aiding vertical growth. Here, the {1101} planes are 

modified by H2 etching, leading to the more stable vertical (1100) m-planes. 

InGaN/GaN MQW structures have been grown on Ga-polar GaN nanorod arrays 

[237], and on the {1101} facets of GaN nanopyramid arrays [225, 241] by 

continuous-flux MOCVD to form core-shell LED structures. In fact, quantum dot 

formation on the apex of GaN nanopyramids has been reported [242]. 

 

2.4.5.2.2. Nanoheteroepitaxy on Nanopillar Substrates (Scheme B)  

The theory of nanoheteroepitaxy (NHE) on patterned substrate was originally 

developed by Luryi and Suhir [53] and extended by Zubia et al. to include effects of 

substrate compliance [55]. This was demonstrated in the MOCVD of GaN structures 

on Si nanoscale islands (diameter 80 – 300 nm) patterned by interferometric 
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lithography from <111>-oriented silicon-on-insulator substrates [243]. As predicted, 

the defect concentration decays rapidly away from the heterointerface. Interfacial 

defects were unavoidable due to the large GaN/Si misfit of ~ 20% but formation and 

propagation of  threading defect were notably reduced in the highly coalesced films 

[244]. NHE of GaN on patterned Si(111) substrates has also been performed. Film 

relaxation and improvement in optical properties were reported for MBE-grown 

highly coalesced GaN on AAO patterned nanoporous Si(111) [245]. Dense arrays of 

Si(111) nanopillars similarly derived from AAO patterning has been used in NHE of 

GaN by MOCVD [246]. Grain boundary defects can heal leading to single crystal 

GaN layers. Mismatch defects were mainly in-plane stacking faults and TDD was < 

10
8
 cm

-2
 at the interface and reduces away from it as seen in Figure 2.12(a).  Facet 

voids present at the GaN/Si interface were believed to reduce strain energy. The 

excellent prospects of nanoheteroepitaxy on nanopillar substrates have been shown 

via the industrially implemented growth of GaN on nanopatterned sapphire substrates 

[247-249]. 

 

Besides aiming for coalesced films, III-nitride heteroepitaxy has also been performed 

on pillar-patterned Si(111) substrates for fabricating GaN truncated pyramids and 

GaN-based nanoLEDs. To achieve deep-etched Si patterns, Fündling et al. developed 

a low temperature inductive coupled plasma etching process [250]. GaN pyramidal 

structures possessing InGaN/GaN MQWs have been successfully grown on top of  Si 

pillars [50, 63, 250, 251]. Crystal quality is improved due to the small lateral size of 

the structures which lowers mismatch strain energy, and reduction of defect densities 

(especially towards the top) because of dislocation bending towards the lateral free 

surface as seen in Figure 2.12(b). Some GaN crystallites grew on the Si pillar 

sidewalls and at the bottom of the etched substrate. The growth mode was found to 

depend on pillar geometry (size, pitch). A smaller pitch results in higher growth rate 
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on top of the pillars and smaller growth at the bottom [250]. Lower growth rates on 

the {1101} sidewalls relative to that of the (0001) top was found to result in thinner 

InGaN QWs and a blue-shift in luminescence [50, 63]. A study of GaN growth on the 

sidewalls of high aspect ratio Si micro-pillars patterned from substrates of various 

orientation  has also been performed [252]. Depending on the orientation and growth 

conditions, various symmetrical growth patterns were achieved. To suppress spurious 

GaN growth on the sidewalls and bottom surface, patterned AlN templates on Si 

substrate with in-situ nitridation have been used with good results [251].  

 

 

Figure 2.12 Heteroepitaxy of GaN on patterned Si substrate. (a) TEM images of GaN films 

grown on Si nanopillars [246]. The main defect type is stacking fault (left). A arrow marks a 

coalescence defect (right). (b) GaN structures grown on Si pillar array [251]. SEM image (top). 

TEM images showing threading dislocations bending towards the sidewall (bottom).  

 

2.5. Chapter Summary  

In this Chapter, an introduction to InGaN was provided. The challenges associated 

with InGaN growth, namely, (i) Ga-meltback etching and unintentional nitridation of 

Si, (ii) thermal and lattice mismatch, (iii) compositional non-uniformity and phase 

separation, and (iv) temperature tradeoff between structural quality and In content, 

were discussed along with traditional mitigation methods. For (i), the deposition of a 

thin AlN buffer in MOCVD may be a viable solution. For the other challenges, novel 

growth strategies are needed. This includes variants of MBE, in-situ SiNy masking , 

ELO, SAG, and nanostructuring schemes. While MBE and its variants improve In 
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composition range by providing low temperature N-rich non-equilibrium conditions, 

it is likely that mismatch strain, defects, and TDs associated with (ii) are not reduced. 

Further, unintentional nitridation of Si in MBE is inevitable. In-situ SiNy masking and 

ELO in MOCVD, typically performed in GaN growth, reduces heteroepitaxy-related 

TDDs, but do not address compositional issues (iii) and (iv). In contrast, SAG of 3D 

structures not only reduces TDDs and increases active device area, but also reduces 

polarization effects and increases In content on non-polar or semipolar planes.  

 

The merits of nanostructuring stem from strain relaxation and dislocation reduction, 

and show the potential to mitigate all the aforesaid growth issues. See Section 1.2.4.3. 

A review of non-templated and templated III-nitride nanostructuring methods was 

presented in this Chapter. For good size and hence property control in nanostructures, 

a templated approach is preferred. Two types are identified, namely, (A) nano-SAG 

from recessed regions (nanopores) of a mask fabricated on a substrate, and (B) 

nanoheteroepitaxy from elevated regions of a nanopillar substrate. In particular, nano-

SAG of InGaN, though promising, has yet to be performed on AlN-buffered Si 

substrates for PV applications. Such a work will have direct implications in the 

development of InGaN/Si tandem solar cells.    
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Chapter 3 Experimental Methods: Patterning, Growth 

& Characterization  

 

3.1. Introduction  

In this Chapter, the experimental methods employed in this work are described. For 

nanopatterning, Step and Flash
TM

 Imprint Lithography (S-FIL
TM

), a form of 

nanoimprint lithography (NIL), is employed. For growth of III-nitrides, metalorganic 

chemical vapour deposition (MOCVD) is used. Morphology characterization involves 

scanning electron microscopy (SEM) and atomic force microscopy (AFM). For 

structure and composition characterization, X-ray diffraction (XRD) and transmission 

electron microscopy (TEM) are used. Lastly, optoelectronic and optical properties are 

measured by photoluminescence (PL) and reflectance spectroscopy. A good 

understanding of these techniques is desired for correct equipment operation, setting 

proper precautions in place, and interpretation of results. The equipment described are 

personally operated by me except for TEM for which an advanced user was involved. 

 

3.2. Nanoimprint Lithography 

3.2.1. Background 

In order to fabricate the templated substrates bearing nanoscale features (in the size 

range of < 100 nm to 300nm) for InGaN growth, a form of nano-scale lithography is 

required. While deep-UV projection lithography and UV interference lithography 

enable higher resolution patterning, they remain constrained by the UV diffraction 

limit. Electron beam lithography (EBL) overcomes the optical diffraction limit and 

allows realization of customizable features down to a few nanometers. However, it is 

too slow to achieve large area patterning. Self-assembly methods such as colloidal 

lithography [253, 254], anodization of aluminum oxide (AAO) [215], and diblock-
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copolymer lithography [219, 255] are simple, cost-effective means of nano-scale 

patterning over larger areas. However, ordering is restricted to domains with little 

pattern versatility. The aforementioned restrictions may be circumvented by NIL in 

which the mould pattern can be defined by EBL or other high-resolution nano-scale 

patterning techniques and thus possess excellent pattern versatility and resolution. As 

NIL depends on direct mechanical deformation of the resist material, its resolution is 

not limited by diffraction or beam scattering during the imprinting process. Large 

area, high-throughput nano-scale imprinting can subsequently be realized at low cost 

by parallel printing or through a stepper. NIL  was originally reported by Chou et al. 

[256, 257] in the scientific literature and has since undergone significant development 

[258].When heat is employed for resin curing, the technique is known as thermal NIL. 

Conversely, when the technique utilizes UV for curing, it is termed UV-NIL. A pre-

requisite in UV-NIL is that either the substrate and/or mould be UV transparent. 

Other variations of NIL, e.g. soft lithography, are also possible [259, 260].  

 

3.2.2. Step and Flash
TM

 Imprint Lithography (S-FIL
TM

) 

The Step and Flash
TM

 Imprint Lithography (S-FIL
TM

) process is a variation of UV-

NIL and was originally developed by Wilson et al. at the University of Texas at 

Austin. Essentially, it is a step and repeat nano-replication technique based on UV-

curable low viscosity liquids. Molecular Imprints, Inc. develops the commercial tools 

for the technology [259, 261, 262]. Through the stepper mechanism, S-FIL
TM

 enables 

wafer-scale patterning of nano-scale features. As the process is performed at room 

temperature, it is very attractive for IC semiconductor device manufacturing. Hence, 

this method is adopted as the central technique for patterning growth substrates in this 

work. This is carried out in a Molecular Imprints, Inc. Imprio 100 machine placed in 

a Class 100 cleanroom. The S-FIL
TM

 process is detailed in Figure 3.1. The numbers in 

the figure follow the numerals in the following text.  
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Figure 3.1 Schematic illustrating the steps involved in Step and Flash
TM

 Imprint Lithography 

(S-FIL
TM

) to produce pillar- or pore-patterned nanoimprinted wafers. 

 

The substrate to be patterned is (1) thoroughly cleaned in boiling piranha solution and 

(2) spin-coated with an organic planarization layer (Transpin from Molecular 

Imprints, Inc.). (3) It is then loaded into the Imprio 100, oriented and leveled against a 

patterned fused silica mould. For each imprint area, nanolitre droplets of UV-curable, 

low-viscosity acrylate resist (MonoMat from Molecular Imprints, Inc.) are dispensed 

onto it and the mould is brought into close proximity with the substrate, thus 

displacing the resist. This induces the resist to spread across the imprint field and fill 

up the mould relief via capillary action. A short exposure to UV light causes the 

polymerization of the monomers in the resist, after which (4) the mould is separated 

from the substrate, leaving behind an inverse replica of the mould pattern. This 

nanoimprint process is optimized for full pattern transfer while minimizing the 

residual material at the base of the recessed features and maintaining its uniformity 
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across the field. (5) The process is step-and-repeated over the wafer to achieve wafer-

scale nanopatterning. (6) The residual layer and underlying planarization layer are 

removed by O2 RIE, thus exposing the substrate in these regions. The remaining 

features form the high-resolution pattern for later pattern transfers. 

 

The key concerns in S-FIL
TM

, as well as other methods of NIL are cleanliness, 

substrate flatness and levelness, and residual layer removal. Due to the use of 

mechanical contact to shape the resin or resist, it is essential that the contact regions 

be free of particles. Particles can cause poor pattern transfer, defects, or may even 

damage the surface-relief features on the mould. Further, it is critical that the 

substrate surface be flat and properly levelled against the mould to avoid non-

uniformity in residual layer thickness in the imprinted patterns. Thus, wafer warp, 

bow and surface curvature and irregularities must be minimized. While the residual 

layer in the imprint support alignment and buffer against direct impact between the 

substrate and mould, its removal during RIE can significantly impact the critical 

dimension achievable in NIL. This is due to the inevitable lateral etching which 

occurs during RIE. Thus, the residual layer thickness must be minimized uniformly 

across the imprinted area to ensure spatially uniform, accurate pattern transfer. 

 

3.3. Metalorganic Chemical Vapour Deposition (MOCVD) 

3.3.1. Background 

Metalorganic chemical vapour deposition (MOCVD) is the key method for the 

epitaxial growth of III-nitrides or InGaN in this work. It is commonly referred to as 

organometallic vapour phase epitaxy (OMVPE) or other permutations of the same 

words e.g. MOVPE and OMCVD. In this thesis, the more generic and historical name 

of MOCVD is used. MOCVD is a method for the deposition of a condensed matter 

phase on a heated substrate via a chemical reaction utilizing metalorganic (MO) 
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precursors in the vapour phase. MOCVD was first reported in the scientific literature 

in 1968 by H. M. Manasevit [263], however, patents describing earlier variants of 

MOCVD clearly predates his report [264, 265]. MOCVD is capable of producing 

high purity, high quality material with atomically abrupt interfaces for device 

applications. It is a versatile technique and is suitable for large-scale production. 

Favorable economics in terms of high growth rates and high yield (uniformity and 

reproducibility) further enhance its attractiveness. Today, MOCVD is undoubtedly 

the preferred technique for the production of nearly all III-V and II-VI semiconductor 

compounds and devices, displacing other epitaxial growth techniques such as 

molecular beam epitaxy (MBE) and chemical beam epitaxy (CBE). 

 

3.3.2. EMCORE/Veeco D125 MOCVD System 

InGaN epitaxy was conducted in an EMCORE/Veeco D125 MOCVD system. Figure 

3.2 shows a schematic diagram of the equipment. The layout may be divided into four 

main sections, namely, (1) the growth chamber/reactor where deposition takes place, 

and to which a loadlock is connected; (2) the gas handling system comprising the 

precursor, other gases sources, pipelines and manifolds; (3) the vacuum and exhaust 

system; and (4) the electronic/process control system. 

 

(1) The growth chamber is a vertical geometry rotating disk reactor (RDR). 

Basically, this comprises a vertical tube into which the precursor gases are introduced 

from the top flange and directed perpendicularly down onto the sample placed on a 

horizontal, rapidly spinning circular susceptor. The top flow flange contains separate 

inlets for the alkyls and hydrides, each having several concentric input zones. The 

flow can be ratio-ed between the zones for tuning of uniformity over the deposition 

surface. Reactant gases are entrained in a shroud flow to facilitate laminar flow at the 

top of the growth chamber. This averts mixing of reactants prior to reaching the 
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growth surface and thus circumvents parasitic pre-reactions. The top flange, sidewalls 

and base regions are water-cooled to prevent overheating and parasitic reactions. 

 

 

Figure 3.2 Schematic diagram of the EMCORE/Veeco D125 MOCVD system.  

 

The susceptor rests on a spindle which is driven to rotate by a toothed belt connected 

to a high speed motor. During growth, the rapidly rotating susceptor (up to 1000 rpm 

or more) create a pumping action that pulls the gases down and across the substrate. 

This assures a uniform boundary layer over a wide range of injection conditions. 

Along with the flow flange design, this leads to more uniform mass transport rate and 

reactant concentration, and hence more uniform composition, thickness and doping 

across the deposition area. The susceptor is heated by a two-zone resistive heating 

system, comprising an inner and outer zone heater. The temperature at each zone is 

measured by a thermocouple. This provides the reference signal to the proportional-

integral-differential (PID) controlled DC low voltage power supply for controlling the 

heater temperature. Two pyrometers at the top of the growth chamber measure the 

surface temperatures of the inner and outer parts of the sample-susceptor ensemble 

since the thermocouples do not measure the temperature of the ensemble directly. A 
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loadlock, maintained at high vacuum by a turbopump, is used as an intermediary for 

transferring samples in/out of the reactor by a mechanical arm. This minimizes 

exposure of the reactor to the ambient. Contamination to the reactor by atmospheric 

oxygen and water vapour, and leakage of gases to the ambient is thus avoided. 

 

(2) The gas handling system distributes, maintains, and controls the Group III, 

Group V and dopant precursors, and carrier/purge gases for growth. It comprises their 

sources, the respective source manifolds, the injector manifolds, and other pipelines, 

pressure gauges, valves, mass flow controllers (MFCs) for delivering the gases to the 

reactor. The Group III precursors employed in MOCVD growth of III-nitrides are the 

Group III alkyls or metalorganics (MO). Trimethylgallium (TMGa), trimethylindium 

(TMIn), and trimethylaluminum (TMAl) are used as the Group III sources of Ga, In, 

and Al respectively. The Group V precursor or hydride used is highly purified NH3 

(99.99994% purity). Bis-cyclopentadienyl-magnesium (Cp2Mg) and silane (46.50 

ppm SiH4 in 99.9954% H2) are used as the p-type and n-type dopant precursors, 

respectively. H2 (99.999% purity and further purified by a palladium cell) and N2 

(99.9995% purity) are available as the carrier gases. For InGaN epitaxy, N2 is 

typically used since H2 causes InGaN etching. The carrier gases and hydride 

precursor are stored in pressurized gas cylinders and MFCs precisely control the flow 

rates (specified as standard cubic centimeters per min or sccm). 

 

The MO sources (SAFC Hitech
TM

) including Cp2Mg are stored in 3” diameter 

stainless steel cylinders called bubblers placed in temperature controlled liquid baths. 

Adduct grade sources are used to ensure that they are free of metallic impurities. The 

high reactivity of Al further requires TMAl to be of low oxygen grade. At the set 

temperatures of -10°C, 20°C, 30°C and 40°C, for TMGa, TMAl, TMIn and Cp2Mg, 

respectively, TMGa (-15.8°C, 55.7°C) and TMAl (15.4°C, 127°C) are liquids, while 
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TMIn (88.4°C, 133.8°C) and Cp2Mg (176°C, 290°C) are solids. The temperatures in 

parentheses are the melting and boiling points respectively. The precursors are 

transported by flowing carrier gas into the inlet of the bubbler as seen in Figure 3.2. 

As the gas “bubbles” through the precursor reservoir it “carries” the precursor in 

vapour phase and exits the bubbler into the MOCVD gas lines. By controlling the 

flow rate of the carrier gas and the bubbler pressure Pb, through the system of mass 

flow controllers and valves, the molar flow rate may be controlled. It is important to 

note Pb must be higher than the chamber growth pressure P to avoid backflow. 

Relationships between the different quantities are as follows. The equilibrium vapour 

pressure of the precursor PMO is a function of the bubbler temperature Tb and given by 

 
log10𝑃MO(Torr) = 𝐴 −

𝐵

𝑇b(K)
 (3-1) 

where A and B are constants specified by the manufacturer and taken from Ref [266]. 

PMO may be converted to units of Pa by 

 
𝑃MO(Pa) = 𝑃MO(Torr) ×

101325

760
 (3-2) 

The molar flow rate of the precursor FMO can be calculated by 

 
𝐹MO(mol/min) =

𝑃std𝑄b
106 × 𝑅𝑇std

×
𝑃MO

𝑃b − 𝑃MO
 (3-3) 

where Pstd and Tstd are the pressure and temperature at standard conditions taken as 

101325 Pa and 273.15 K respectively, R is the molar gas constant (= 8.314 J mol
-1

 K
-

1
), Qb is the volume flow rate of the carrier gas into the bubbler in sccm, and Pb is in 

Pa. Taking a set of TMIn growth conditions used in this work, where A = 10.52, B = 

3014, and Tb = 303.15 K, then PTMIn = 3.782 Torr or 504.2 Pa. For Qb = 120 sccm and 

Pb = 400 Torr or 53329 Pa, FMO = 51.1  10
-6

 mol/min or 0.0511 mmol/min. Each 

source has an individual manifold for control. Further, there are three injector 

manifolds, one for the hydride and carrier gases, one for the alkyls and the dopants, 
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and one solely for TMAl to avoid parasitic reactions. The injector manifolds are 

integrated valve blocks (multiples of 2 port configurations) that provide switching of 

gases between the run mode (for delivery of gases to the reactor) and vent mode. By 

balancing the pressure (measured by a diaphragm gauge) between the run line and 

vent line, the injector manifold enables rapid switching of gases at stable flow rates. 

 

(3) The vacuum and exhaust system is responsible for controlling the process 

chamber pressure, evacuation of the loadlock, and treatment of the exhaust before 

safe release to the environment. For the reactor, the main components are the vacuum 

system, the exhaust system, and the toxic gas adsorber (TGA). In the vacuum system, 

the reactor pressure is controlled by adjustment of a throttle valve via a closed loop 

with feedback from a Baratron pressure sensor. The rotary vane pump provides the 

necessary suction for continuous gas flow through the chamber. The role of the 

exhaust system is to trap all particles in the exhaust before it goes to the TGA. This is 

accomplished by filters and a particle trap situated under the reactor base. Within the 

TGA system, special activated charcoal granules adsorb all hydrides and metal-

organics. In this way, the treated exhaust may be safely released to the environment. 

 

(4) System control is executed by a real time programmable controller that controls 

all MFC flows, valves, heater power supplies, pressures and spindle rotation. The 

controller is interfaced with a computer for recipe input or entry of other parameters. 

The computer enables supervisory control of the system and also monitors all the 

safety systems.  Recipes are entered in a spreadsheet format that specifies the 

reactants, pressures, growth temperature, duration, and flow rates. 

 

Chemical reactions in MOCVD involve the decomposition of the input compounds 

using thermal energy. This is termed pyrolysis and may involve many intermediate 
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reactions. The actual reactions are influenced by reactor and growth conditions, such 

as reactor chamber geometry, temperature of susceptor and reactor wall, pressure, 

flow rates of precursors and carrier gases. They may be classified into homogeneous 

gas-phase reactions occurring between the same phases, and heterogeneous surface 

reactions occurring at the interface between different phases (e.g on solid surfaces). 

Reactions that limit the growth efficiency or form unwanted by-products (mainly in 

homogeneous reactions) are termed parasitic reactions.  The growth process may be 

analyzed in terms of thermodynamics, kinetics and hydrodynamics. 

 

3.3.3. Thermodynamics Consideration 

In MOCVD, thermodynamics may be employed to predict whether a solid will form 

from the vapour phase, or the energetic feasibility of a proposed chemical reaction, 

under a given set of conditions by considering the reaction “driving force”. Hence, for 

a given set of conditions, the equilibrium phase composition may be predicted. We 

consider the thermodynamic analysis by Koukitu et al. [267, 268] for the growth of 

InGaN which is the subject of this work. Near the vapour-solid interface, the MO 

precursors (R3In and R3Ga, where R is an alkyl group, such as CH3 or C2H5) are 

decomposed irreversibly according to the following homogeneous reactions. 

 R3In (g) + 3/2 H2 (g)  In (g) + 3 RH (g)  (3-4) 

 R3Ga (g) + 3/2 H2 (g)  Ga (g) + 3 RH (g) (3-5) 

The chemical reactions which proceed at the substrate surface to form InxGa1-xN are  

 In (g) + NH3 (g)  ⇌ InN (alloy) + 3/2 H2 (g) (3-6) 

 Ga (g) + NH3 (g)  ⇌ GaN (alloy) + 3/2 H2 (g) (3-7) 

where InN(alloy) and GaN(alloy) stand for the binary compounds in the ternary 

InxGa1-xN alloy. Under complete equilibrium conditions, most of the NH3 is expected 

to decompose into N2 and H2 at temperatures > 300°C. However, the decomposition 
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rate is slow without a catalyst, such that only a fraction is decomposed even for the 

higher temperatures (~ 650°C to 800°C) used in this work. The equilibrium partial 

pressure and vapour-solid distribution relationship for different conditions in InxGa1-

xN growth have been calculated [267, 268]. It is found that three deposition modes 

exist: the growth regime, In droplet formation regime, and the etching regime. The 

results indicate high V/III ratios are required to obtain suitable deposition of InGaN 

and avoid In droplet formation. Thus, high V/III ratios (~ 9200) are typically used in 

this work to obtain InGaN growth. 

 

3.3.4. Kinetics Considerations 

Thermodynamic equilibrium concepts dictate the state of a system given very long 

times. However, MOCVD is not exactly an equilibrium process. An understanding of 

the kinetics is needed to elucidate the actual steps involved and describe the rates of 

the intermediate steps occurring between the initial and final equilibrium state. Even 

if a thermodynamic driving force for a reaction exists, the energy barrier of the 

overall reaction (which is linked to the intermediate states) needs to be overcome for 

it to actually happen. The rate constant k is related to the energy barrier or activation 

free energy G*, temperature T, and molar gas constant R by 

 
𝑘 = exp(−

Δ𝐺∗

𝑅𝑇
)  (3-8) 

MOCVD can be kinetically modeled with rate-limiting steps. The rates of these are 

functions of temperature, flow dynamics, pressure and substrate orientation. The 

typical rate-limiting steps during growth at various substrate temperatures T are 

shown in Figure 3.3. At low T, the surface reaction is slow. The growth rate Rg 

increases with increasing temperature and is influenced by substrate orientation. That 

is, it is surface-reaction limited. At higher T, Rg becomes limited by the mass transfer 

of precursors through the boundary layer, with relative insensitivity to T and substrate 
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orientation. When the surface reaction is fast enough, the vapour pressure on the 

surface approaches the equilibrium value and Rg is determined by the partial pressure 

of precursors in the input gas stream near the boundary layer. Further increase in T 

reduces the growth rate due to “parasitic” homogeneous reactions, increased reactor 

wall deposition, and desorption of atoms from the growth surface. That is, at high T, 

MOCVD is thermodynamically limited. 

 

 

Figure 3.3 Graphical representation showing the rate-limiting steps as a function of reciprocal 

temperature 1/T during MOCVD. 

 

3.3.5. Hydrodynamics and Mass Transport 

Hydrodynamics and mass transport are closely related, and influence the transport of 

material to the growing solid-vapour interface. In an open-flow system for MOCVD, 

the following steps occur: (1) mass transport of input precursors by the flowing gas 

stream; (2) mass transfer (also called diffusion or mass “transport” type II) of 

precursors through the boundary layer near the substrate surface; (3) surface 

processes including adsorption of precursors and/or pyrolyzed precursors; (4) 

chemical reactions resulting in material growth; and (5) desorption of by-products 

from the surface. It is important to note that in some literature, the mass “transfer” 

step is also referred to as a mass “transport” step. There, “diffusion-limited” and 
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“mass-transport-limited” are used synonymously to describe the mass transfer step. 

However, this does not refer to mass transport by a flowing gas stream. 

 

Hydrodynamics depend strongly on the reactor configuration and total system 

pressure P. At very low P (< 7.5 Torr), Rg is entirely kinetically controlled, even at 

relatively high T, such that Rg is virtually independent of P. In fact, at lower P (< 

0.075 Torr), molecules can travel from the source to the substrate without interacting 

with other molecules. This is known as the molecular flow regime. For P > 7.5 Torr 

(in most MOCVD systems, such as that used in this work) the growth process is in a 

viscous-flow regime and Rg is influenced by mass transfer.  

 

3.4. Characterization Techniques 

3.4.1. Scanning Electron Microscopy (SEM) 

The small size of the nanostructures (down to a few nm) fabricated in this work 

necessitates the use of a scanning electron microscope (SEM) for rapid topography 

measurement. Light microscopes utilizing visible light (wavelength 400 - 700 nm) are 

unable to resolve feature sizes less than ~ 200 nm due to the diffraction limit. SEM 

provides improved depth of field, higher magnification, analytical capabilities and 

image processing benefits. Lateral resolutions of 1 – 5 nm (with a field emission 

source) and depth resolutions of 1 – 10 nm (using secondary electrons signals) are 

achievable. The two main components of an SEM are the electron column and the 

control console. The electron column comprises an electron gun, electron lenses, 

apertures, and scan coils which affect the electron path down the evacuated column 

(pressures ~ 10
-4

 Pa), specimen stage and detector. The control console consists of 

displays, electronics, and computers that control the electron beam and are involved 

in image/data acquisition [269]. See Figure 3.4 for a schematic drawing of a SEM.  
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The electron gun provides a stable source of electrons and accelerates them to an 

adjustable energy range of 0.1 – 30 keV. The electron lenses focuses the electron 

beam to a small spot size (< 10 nm) on the specimen, thus enabling the generation of 

a sharp image. A deflection system, consisting of a scan generator and two pairs of 

electromagnetic scan coils, sweeps the electron beam over the specimen surface in a 

raster scan pattern. As the electron beam interacts with the specimen, signals are 

collected for image formation.  Contrast in an image arises from spatial variation in 

the signal collected from beam-specimen interaction. The electronics of the detector 

system converts the signals to point-by-point intensity changes for image formation. 

 

 

Figure 3.4 Schematic showing the components of a scanning electron microscope [269]. 

 

The most common signal used to produce SEM topographic images is that formed by 

secondary electrons (SE). SE are principally liberated due to the interaction of the 

energetic beam electrons and weakly bound conduction band electrons in metals or 

outer shell valence electrons in insulators and semiconductors. One of their defining 

characteristics is the very low kinetic energies (peaking in the range of 2 – 5 eV) 

which dictate a shallow escape depth. SE generated directly by the incoming beam of 
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electrons constitutes a high-resolution signal since the lateral spatial resolution of the 

focused beam and the shallow sampling depth of the SE are preserved.  

 

Electrostatic charging arises when electrons injected into a specimen are not 

effectively conducted to ground and accumulate, thus developing a highly negative 

electrical charge. This is a common problem when imaging insulating or poorly 

conducting specimens (e.g. the SiNy templates fabricated in this work) and manifests 

as unexpected brightening/darkening or distortion in images generated from SE. SE 

are vulnerable due to their low kinetic energies. Deposition of a thin layer of 

conductive material, e.g. ~ 10 nm of gold, on the specimen with good mounting and 

grounding can alleviate the problem.  

 

Machining errors, non-uniformities or asymmetry in the electron lenses, and unclean 

apertures may lead to astigmatic or non-perfectly cylindrical lenses. The astigmatism 

blurs the image. This may be corrected by a stigmator which applies a weak 

supplement magnetic field to make the lens appear “symmetric” to the electron beam. 

The x- and y-stigmator controls and the focus control are adjusted alternately at high 

magnification to achieve the sharpest image allowable at which point the beam cross-

section is at its minimum. In this work, images are acquired by either a JOEL JSM 

6700F or a Nova NanoSEM 230. Both employ field emission type electron guns 

(specifically, a cold field emitter and a Schottky field emitter respectively), thus, the 

term, field emission SEM (FESEM). These offer higher brightness, longer lifetime 

and lower energy spread than older electron sources. Excellent lateral resolutions of 1 

– 5 nm are achievable compared to 10 – 50 nm for conventional electron sources. 
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3.4.2. Atomic Force Microscopy (AFM) 

Atomic force microscopy (AFM) is a technique that allows visualization and 

measurement of the surface topography in three-dimensional (3D) detail down to the 

nanometer scale. Unlike conventional methods of imaging which utilize a wave (e.g. 

light or electrons) and perceive the surface morphology by line-of-sight reflections 

and shadows, AFM measures surface height at each point on a surface by “feeling” 

with a sharp solid probe or tip (attached to the end of a cantilever) that is raster 

scanned over the surface. Excellent height resolution (sub-nm range) and lateral 

resolution (~ 1 nm) or better is achievable. As the image is constructed from spatial 

height values, various metrics of topography can be derived, such as standard 

deviation of height, root-mean-square (RMS) roughness, and slopes. The latter is 

used for the identification of crystal facets of InGaN nanostructures in this work. An 

AFM consists of several key components, namely, a x-y-z scanner, a piezo stack, a 

cantilever with a tip at one end, a laser beam directed at this end, a photo-diode 

detector which picks up the reflected signal from the cantilever, a specimen stage, 

detector electronics, controller electronics and computer as illustrated in Figure 3.5.  

 

 

Figure 3.5 Schematic drawing of an atomic force microscope showing its general operation. 
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AFM can be operated in one of three ways, namely, contact mode, non-contact mode 

and tapping mode. As contact occurs only gently and briefly in tapping mode, tip and 

specimen damage is minimized. Hence, it is employed in this work, in a Bruker 

Dimension Icon
®
 Atomic Force Microscope. Topography is measured by monitoring 

the cantilever’s oscillation amplitude as the tip is scanned across the specimen surface. 

The piezo stack excites the cantilever to vibrate vertically with a constant sinusoidal 

“free” amplitude at or below its fundamental resonant frequency. When the tip 

interacts with the surface, the amplitude decreases and is detected by the split 

photodiode detector via the laser beam reflected off the cantilever. The feedback loop 

(encompassing the detector electronics and controller electronics) maintains a 

constant damped oscillation amplitude (typically 20 – 100 nm) by vertically moving 

the scanner at each (x, y) data point to maintain a constant “setpoint” amplitude. By 

keeping a constant oscillation amplitude, a constant tip-sample interaction is 

maintained [270]. The motion information is then utilized for image construction. 

 

While AFM can provide detailed high-resolution 3D information of a surface’s 

topography without an evacuated environment, and the capability for data processing 

and analysis, AFM image acquisition is slow. Typically, a few minutes to a few tens 

of minutes is required depending on the scan area and rate. The measurement range is 

typically limited to several micrometers vertically and several tens of micrometers 

laterally [271].Unlike SEM, where the probing electron beam can be rapidly deflected 

and raster scanned over relatively large areas of the specimen surface, the raster scan 

speed of the AFM tip is kept low to ensure accurate surface tracking with minimal 

loss of topography information. Hence, AFM is best suited for characterizing small 

areas where detailed topography information is needed. In this work, 1 m  1 m 

scan areas with a scan rate of 0.80 Hz is employed for reliable surface measurement. 

Due to the physical contact that inevitably occurs between the tip and surface during 
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scans, blunting or contamination of the tip with debris may occur. This may lead to a 

loss of resolution, distorted imaging or generation of artefacts in the acquired image. 

A replacement of tip is indicated in such cases. Secure sample mounting and 

vibration isolation stages are also necessary to avoid external or environmental noise 

introduction. Ultimately, resolution and accuracy is limited by the tip sharpness. 

 

3.4.3. Transmission Electron Microscopy (TEM) 

Transmission electron microscopy (TEM), like SEM, employs an electron beam to 

produce magnified images of a specimen. However, it differs from SEM in that TEM 

images are constructed from transmitted electrons, rather than secondary or 

backscattered electrons. A pre-requisite for the transmission of electrons is that the 

specimen has to be made extremely thin or “electron-transparent” such that electrons 

can be transmitted through rather than scattered or absorbed by the specimen. The 

nature of specimen preparation and imaging thus allows the ultrastructure of the 

specimen to be observed. In fact, modern TEMs which possess resolution ~ 0.2 nm or 

better are able to image individual atomic planes or columns of atoms. The technique 

can also be used to produce electron diffraction patterns for analyzing the properties 

of crystalline specimens, such as epitaxial relationships and crystal structure. In 

addition, defects may also be imaged in TEM. These capabilities are particularly 

suited for characterizing epitaxially grown III-nitride structures in this work. 

 

A transmission electron microscope may be divided into three sections, namely the 

illumination system, the specimen stage and the imaging system as illustrated in 

Figure 3.6. The illumination system consists of an electron gun, two or more 

condenser lenses and apertures that focus the electrons onto the specimen. The 

specimen stage secures the specimen, allows it to be moved, inserted or withdrawn. 

The imaging system comprises at least three lenses and various apertures that allow 
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diffraction patterns (DP) or highly magnified images of the specimen to be produced 

on a fluorescent screen or detector of an electronic camera system [272].  

 

 

Figure 3.6 Schematic drawing of a transmission electron microscope in which the objective 

aperture is inserted and SAD aperture is withdrawn for imaging. 

 

In the diffraction mode, the objective aperture is removed while the selective area 

diffraction (SAD) aperture is inserted. The different positions of these apertures 

relative to the TEM optics enable their respective modes and functions to be fulfilled. 

The DP provides information on the crystallinity (crystalline or amorphous, 

monocrystalline or polycrystalline), crystallographic characteristics (lattice parameter, 

symmetry), phase and orientation of the specimen. The SAD pattern of an InGaN film 

is given in Figure 5.11(c). The well-defined diffraction spots indicate that it is 

monocrystalline and the pattern indicates its hexagonal close packed lattice structure.  

In the imaging mode, the objective aperture is inserted while the SAD aperture is 

withdrawn. Two types of imaging can be achieved, bright field (BF) imaging and 

dark field (DF) imaging. In BF imaging, the objective aperture is centered on the 
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direct beam and is the standard imaging mode of TEM. Here, weakly diffracting 

regions appear bright while strongly diffracting regions appear dark. In dark field 

imaging, the objective aperture is centered on a diffracted beam such that weakly 

diffracting regions appear dark and regions strongly diffracting into the selected 

diffracted beam appear bright [273].  

 

“Weak-beam (WB) microscopy” is a technique in TEM which allows formation of 

diffraction-contrast images in BF and DF for imaging defects. The WBDF approach 

is commonly used as it gives stronger contrast (white lines on a dark gray 

background). The specimen is tilted to a so-called two-beam condition, in which the 

intensity of the selected diffracted beam is enhanced (but remains weaker than the 

direct beam). If a defect is present, this allows the diffracting planes to be bent locally 

back into the Bragg-diffracting orientation and provide stronger contrast in the image. 

When the corresponding diffraction pattern is viewed on the screen, the vector from 

the direct beam spot to the diffracted beam spot is known as the g vector. For contrast 

of a defect with Burgers vector b to be detectable, g ∙ b should be greater than 1/3. 

This criterion is useful for imaging TDs in cross-sectional TEM specimens [274]. 

Screw and mixed TDs in III-nitrides have b = [0001] and b = 1/3<1123> respectively, 

and can be imaged in the two-beam condition with g = 0002 under the [2110] or 

[0110] zone axis. Figure 5.11(a) and (b) respectively show the BF and WBDF images 

of an InGaN film allowing TDs with screw character to be visualized. For the two-

beam condition with g = 0110 (under the [2110] zone axis) or g = 2110 (under the 

[0110] zone axis), edge TDs (with b = 1/3[1120]) and mixed TDs (with b = 

1/3<1123>) can be imaged. In this work, a JEOL JEM-2100 transmission electron 

microscope operated at an accelerating voltage of 200 keV was used. 
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3.4.4. X-ray Diffraction (XRD) 

X-ray diffraction (XRD) is a characterization technique used to find the thickness, 

lattice parameters, strain, composition and defect densities or quality of crystalline 

layers. Its non-destructive nature and fast analysis have endeared it to III-nitrides 

characterization. XRD employs X-rays to probe a crystalline sample. For epitaxially 

grown single crystalline III-nitrides, a high-resolution XRD setup using a four-circle 

diffractometer is typically employed. X-rays generated by bombarding a Cu target 

(Cu K1,  = 1.540598Å) with electrons in an evacuated tube is passed through a 

monochromator to select for monochromatic X-rays and directed at the specimen. 

The specimen is mounted on a stage at the center of the diffractometer. The 

configuration permits relative rotation of the sample and detector such that a large 

number of (hkl) or reflections can be individually accessed. Detection of the 

reflections is based on constructive interference and elegantly described by Bragg’s 

law as shown in Equation (3-9). 

 n = 2d sin  (3-9) 

Equation (3-9) relates the spacing d between the atomic planes from which diffraction 

is occurring with  as the angle between the incident X-ray and atomic planes.  is 

the wavelength of the X-ray and n is an integer taken as unity in XRD. In a double-

axis setup, “reflected” X-rays are screened just by a slit as seen in Figure 3.7. This 

setup is usually used due to its higher intensity, simpler and faster operation [275]. 

 

 

Figure 3.7 Schematic drawing of a double-axis high-resolution X-ray diffractometer. 



78 

 

 

When the “reflected” X-rays are collimated by an optical element (analyzer crystal), 

finer features and details can be resolved, and the configuration is termed triple-axis. 

While crystal planes exist in real space, each set of crystal planes produces a 

diffraction spot corresponding to a reciprocal lattice point (RLP) in reciprocal space. 

The reciprocal space concept aids in the analysis and interpretation of results. 

Directions remain the same in both real and reciprocal space but distances are 

inverted. It is helpful to visualize the reciprocal lattice as being ‘stuck’ to the crystal, 

such that the when the crystal moves relative to the incident X-ray beam, so does the 

reciprocal lattice. A section through the reciprocal space for a [0001]-oriented III-

nitride crystal is shown in Figure 3.8. The definition of angles (, , , 2) in a four-

circle diffractometer is shown in Figure 3.9. 

 

 

Figure 3.8 Section through reciprocal space for a [0001]-oriented III-nitride layer. 

 

ki and kd are the incident and diffracted beam vectors respectively. The scattering 

vector S is given by kd - ki. The magnitude of kd = ki = 1/. The Ewald sphere is 

shown in Figure 3.8 as the red full circle intersecting the origin and the RLP of 0004. 

Diffraction occurs when the sphere intersects a RLP. The outer limit of the reciprocal 

lattice space that can be accessed by S for a given X-ray wavelength in the symmetric 

(  = ) and asymmetric configuration (   ) is outlined by the large semicircle. 
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Regions blocked by the incoming or outgoing beams are inaccessible and are shaded. 

However, these may still be accessed in a skew symmetric configuration by rotating 

the specimen 90° about  and tilting the sample about  (Figure 3.9) since the shaded 

semicircular regions remain fixed in the plane containing ki and kd. This configuration 

is used to access RLPs blocked in the asymmetric configuration such as that 

associated with the (20.1) and (10.2) set of planes mentioned in Section 6.5.2.2. 

 

 

Figure 3.9 Schematic showing a sample in a symmetric configuration in a four-circle XRD 

diffractometer along with the four axes of rotation (, , , 2) (left). To access the reciprocal 

space in the forbidden region, a skew symmetric configuration may be used and is achieved 

by rotating the sample by 90° about the -axis and tilting the sample about the -axis (right). 

 

For a hexagonal system, the interplanar spacing dhkl for the (hkl) or corresponding 

(hkil) set of planes is related to the a and c lattice parameters by:   

 1

𝑑ℎ𝑘𝑙
2 =

4

3

ℎ2 + 𝑘2 + ℎ𝑘

𝑎2
+
𝑙2

𝑐2
 (3-10) 

To determine the lattice parameters of an epilayer, at least two dhkl measurements are 

required. Usually, one symmetric reflection (giving d0002 or d0004) to find c, and one 

off-axis (asymmetric or skew symmetric) reflection (typically d1015) are used. As an 

example, from the (0002) 2- spectrum of the InGaN film grown at 795°C in Figure 

5.3, 2002 = 34.452°. Using Equation (3-9) gives d002 = 2.6011 Å. Further, using 

Equation (3-10) gives c = 5.2022 Å. Similarly, for 2105 = 104.499°, d105 = 0.97422 Å. 

This gives a = 3.2042 Å. In this work, InGaN is directly grown on AlN/Si(111) 



80 

 

substrates. Due to the large mismatch in thermal expansion and lattice constants 

between InGaN and the substrate, the InGaN layer is likely in a partially strained state. 

Estimation of the In content x in InxGa1-xN thus requires the prior determination of 

both a and c lattice parameters as described above. The strain and composition are 

then determined together, iteratively, in accordance to ref. [104], by taking into 

account that in a hexagonal system under simple biaxial strain, the out-of-plane strain 

is related to the in-plane strain by: 

 𝑐 − 𝑐0
𝑐0

= −
2𝜐

1 − 𝜐
(
𝑎 − 𝑎0
𝑎0

) (3-11) 

where  is the composition-dependent Poisson’s ratio, and a0 and c0 are the fully 

relaxed lattice parameters. An initial estimate of x is first made, and , a0 and c0 are 

obtained by linear interpolation and Vegard’s Law calculations from GaN and InN 

reference values obtained from ref [276-278]. The values are inserted into the left-

hand-side (LHS) and right-hand-side (RHS) of Equation (3-11). The computed LHS 

and RHS values are compared and adjustment to x is made (with updates to , a0 and 

c0) to reduce the difference between the LHS and RHS values. The process continues 

iteratively until the difference is acceptably small (< 0.01%). For the prior example 

with c = 5.2022 Å and a = 3.2042 Å, an In content x = 0.037 is calculated. 

 

The XRD characterization of III-nitrides frequently employs -scans, 2- scans, 

and -scans. In -scans (or rocking curve scans) both the X-ray source and detector 

remain stationary as the sample is “rocked” or rotated about the -axis. This 

corresponds to the scattering vector S shown in Figure 3.8 tracing out an arc centered 

on the origin in reciprocal space. The length of S remains constant but its direction 

changes. The scan probes the broadening of diffraction spots in reciprocal space 

which may arise from microstructural defects. This manifests as a broadening of the 

full-width-at-half-maximum (FWHM) of the rocking curve. For instance, the FWHM 
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of 000l -scans provides an indication of lattice tilt. Figure 3.10 shows a typical 

(0002) -scan of an InGaN film grown on AlN(0001)/Si(111). In simple thin films, 

as tilt is associated with screw and mixed TDs, it is possible to estimate the densities 

of these TDs [279-281]. Pure edge dislocations have b within the (000l) planes, and 

hence do not distort these planes and contribute to tilt. Indication of lattice twist may 

be provided by the FWHM of skew symmetric -scans with high inclination angles  

(e.g. the (20.1) reflection). In simple thin films, since twist is associated with edge 

and mixed TDs, the densities of these TDs may similarly be estimated from the 

FWHM values [279-281].  

 

 

Figure 3.10 (0002) -scan of an InGaN film grown on AlN(0001)/Si(111) at 795°C and 300 

Torr. The FWHM is an indication of lattice tilt. 

 

Higher tilt may be measured for material grown with TD reduction techniques such as 

two-step epitaxial lateral overgrowth (ELO) [282], pendeoepitaxy [154], and 

deliberate island formation. Hence, caution should be employed in the analysis of TD 

densities obtained from tilt measurements in these cases. This is due to the bending of 

edge TDs away from the [0001] direction. The tilt appears higher while the twist 

remains the same. Mathematically, the invisibility criterion g ∙ (b  u) is used to 

ascertain the influence of inclined or bent TDs. Here, g is the 000l reflection, b is the 

Burgers vector and u is the TD line direction. If g ∙ (b  u)  0, then the TD will 
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affect the 000l -scan, as is the case for edge TD with b = 1/3[1120] inclined away 

from the [0001] direction. Hence, comparison of structural characteristics between 

InGaN thin films and nanopyramids grown in this work (see Figure 6.4) is based on 

FWHM values of -scans rather than TD densities estimated from -scans.  

 

In 2- scans, the sample is rotated about the -axis and the detector is rotated about 

the 2 -axis with an angular ratio of 1:2. The length of S changes but its direction 

stays constant. As the III-nitrides grown in this work are [0001]- or c-oriented, 2- 

scans may be used in phase composition analysis. This is because different III-nitride 

members have different lattice constants and hence manifest as peaks occupying 

different 2 positions. For InGaN, peaks broadening may arise from alloying and 

inhomogeneous strain [283]. Further, the presence of a few InGaN peaks may 

indicate phase separation. In droplet peaks may also be present as seen in Figure 6.2. 

 

Azimuthal -scan of either the skew symmetric and asymmetric reflections over 360° 

may be used to establish the epitaxial relationships between the III-nitrides and the 

underlying substrates. For instance, the six-fold in-plane symmetry of the III-nitrides 

presents six periodic peaks in the (10.5)--scan while the three-fold in-plane 

symmetry of on-axis Si(111) substrates presents three periodic peaks in the (111)--

scan. The relative positions of the periodic peaks between the two scans may be used 

to rapidly determine the epitaxial relationship of the two layers non-destructively. For 

example, the coincidence of the III-nitride peaks and Si peaks in the skew symmetric 

scans as seen in Figure 5.14 allow an epitaxial relationship of InGaN(0001) [2110] || 

AlN(0001) [2110] || Si(111) [011] to be established in accordance to Figure 2.3(a). 
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In this work, high-resolution X-ray diffraction (HR-XRD) was performed in 

PANalytical X’Pert Pro-MRD X-ray diffractometers utilizing the Cu K1 line with a 

wavelength of 1.540598Å in double-axis or triple-axis configuration. 

 

3.4.5. Photoluminescence (PL) Spectroscopy 

Photoluminescence (PL) spectroscopy is a non-destructive optical characterization 

technique that may be used to study the quality of semiconductor materials and 

elucidate the physics accompanying radiative recombination. It may be used to 

characterize band edge luminescence, optically active impurities and defects which 

give rise to radiative transitions in semiconductors. PL refers to the emission of light 

or photons when a semiconductor material is optically excited by an external light 

source. The excitation leads to a non-equilibrium distribution of electrons and holes, 

or excitons which may recombine radiatively. Figure 3.11 shows several possible 

radiative recombination mechanisms. 

 

 

Figure 3.11 Illustration of some possible radiative recombination routes in photoluminescence. 

 

The above recombination pathways give rise to various features in the PL spectra 

such as peaks and shoulders. Their identification typically involves the use of 

complementary information obtained from other characterization techniques such as 

deep-level transient spectroscopy, Hall measurement and secondary ion mass 
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spectroscopy to characterize and quantify optically active defects or dopants in the 

semiconductor. Non-radiative recombination centers arising from structural defects 

such as dislocations, or impurity incorporation will also affect the PL line shape by 

competing with radiative recombination routes. Further, a PL spectrum may also be 

complicated by Fabry-Perot interference effects and phonon replicas which manifests 

as periodic peaks. Thus, prior information on the layer structure and background of 

the material is warranted. For InxGa1-xN, because the ternary alloy continuously spans 

a range of compositions (from x = 1 to x = 0), and hence bandgaps (from 0.7 eV to 

3.4 eV), identification of the optically active defects and impurity states for all 

compositions is difficult, and information remains rare. Moreover, identification may 

be obscured by phase inhomogeneities which give rise to additional secondary peaks 

or In clustering which cause a red-shift in the emission. Thus, analysis of InGaN PL 

lineshapes is challenging. 

 

More comprehensive spectroscopic information can be obtained by performing PL 

spectroscopy at low temperatures. This minimizes thermally activated non-radiative 

recombination processes and thermal line broadening. A microscopic defect such as 

that due to dislocations or impurity can induce a deformation of the band structure 

such as that illustrated in Figure 3.12. The deformations may be due to local trapped 

charges, local strain or composition fluctuations and generate a barrier of height EA 

around the recombination center. Only carriers with sufficient energy to overcome the 

barrier can recombine thus explaining the thermal activation of non-radiative 

transitions [284]. 
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Figure 3.12 Band structure of thermally activated non-radiative recombination centers 

showing the energetic barrier surrounding it. Band deformations of (a) and (b) may be due to 

local trapped charges, while that of (c) may arise from local strains. 

 

The thermal quenching of PL intensity I can be modeled by the following Arrhenius 

equation with a variable number of thermally activated non-radiative recombination 

channels, each associated with an activation energy EA [285-288]. 

 
𝐼 =

𝐼0

1 + ∑ 𝐶𝑖𝑖 exp (
−𝐸A𝑖
𝑘B𝑇

)
 

(3-12) 

where I0 is the PL intensity at low temperature, Ci is the constant relating to the 

strength of the i
th
 non-radiative recombination channel, EAi is the corresponding 

activation energy, kB is the Boltzmann’s constant and T is the temperature. 

 

In this work, -PL measurements were carried out in a Renishaw Ramascope 2000 

setup using a Kimmon 325 nm He-Cd laser tube (101 mW continuous wave) as the 

excitation source. The setup is integrated with a microscope (see Figure 3.13) for 

measurement of micron-scale areas, hence the term -PL. Raman spectroscopy may 

also be performed on the same equipment. The beam from the laser tube is first 

attenuated with neutral density filters if needed, after which it is passed through a 

plasma filter (to remove the background plasma and secondary emissions), 

conditioned and directed onto the sample in the microscope. The latter also allows 

viewing and selection of the area to be characterized. Emission from the sample is 

directed and conditioned via a series of optical components (which also filters off the 
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laser source emission) into a monochromator. The monochromator employs a 

diffraction grating and prism mirror to scan through the wavelength components of 

the emission which is detected by a CCD camera. A laser spot with diameter ~ 40 m 

is used, with a probe depth ~ 100 nm (for an absorption coefficient of 10
5
 cm

-1
). Low-

temperature measurements from 20 to 300K, when performed, employs a cryostat 

operating on a CTI-Cryogenics closed cycle He refrigeration setup. 

 

 

Figure 3.13 Schematic drawing of the setup used for micro-photoluminescence spectroscopy. 

A cryostat may be used to cool the sample for low temperature -PL measurement. 

 

3.4.6. Reflectance Spectroscopy 

Incident light arriving at a surface of a medium may be reflected from or transmitted 

into it. Of the transmitted light, some of it may be absorbed, or scattered (e.g. through 

Raman scattering, Brillouin scattering, etc.) while the rest passes through the medium. 

Part of the absorbed electromagnetic waves may be dissipated as heat or re-emitted at 

a different frequency as photoluminescence. Reflectance spectroscopy is the 

investigation of the spectral intensity and composition of radiation reflected from a 

surface with respect to that of the incident radiation and their angular dependences 

[289]. In optical surface engineering and surface texturing schemes to reduce 
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reflection losses and promote light coupling into a material (e.g. semiconductor for 

photovoltaic applications), reflectance spectroscopy provides a quantitative measure 

of the anti-reflection and light admission capabilities of the surface. In this work, 

normal reflectance measurements were made in a CRAIC QDI 2010 UV-Visible-NIR 

range micro-spectrophotometer. The setup is illustrated in Figure 3.14. 

 

 

Figure 3.14 Schematic drawing of the setup used for normal reflectance measurement. 

 

White light from a UV-visible-NIR illumination source (Xe lamp) is directed via a 

series of optical components in the microscope and focused onto the sample via the 

microscope objective. Depending on the material properties and structure, the sample 

absorbs or reflects some wavelengths of light better than others. Reflected light is 

collected by the objective and focused onto the mirrored entrance aperture of the 

spectrophotometer. Since the aperture is mirrored, majority of the light is reflected 

into a digital imaging system. This allows the observation of the aperture  being 

overlain on the sample such that the sampling area can be easily selected via 

movement of the sample stage. Light that passes through the aperture enters the 
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spectrophotometer and is dispersed into its component wavelengths by an optical 

grating. The intensity as a function of wavelength is measured by a thermoelectric 

(TE) cooled charge coupled device (CCD) detector and processed by the computer 

into a reflectance spectrum. The setup may also be configured for measurement of 

absorbance, transmittance and emission (such as fluoresence) spectra of sub-micron 

sized samples. 

 

Operation of the equipment for reflectance measurement is straightforward. A dark 

scan is first performed to measure the dark counts of the system. Then, the spectrum 

from a reference material (in this case, an aluminum standard mirror) is acquired. The 

reference spectrum contains the spectral characteristics of the reference material, the 

light source, the optics and the CCD. The spectrum from the sample of interest is then 

collected and an algorithm applied to calculate the reflectance spectrum taking the 

illumination conditions into consideration. 

 

3.5. Chapter Summary  

In this Chapter, the main experimental methods employed in this thesis have been 

discussed. For nanopatterning, S-FIL
TM

 was employed, while for III-nitride growth, 

MOCVD was used. Sample characterization involved SEM, AFM, XRD, TEM, 

reflectance and photoluminescence spectroscopy. The basic theory, operating 

principles and precautions taken for these methods were presented. This will facilitate 

good understanding of the techniques so that results can be reliably obtained and 

correctly interpreted.   
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Chapter 4 Nanopatterning Techniques on Si Substrates  

 

4.1. Introduction  

This Chapter describes some nanopatterning techniques developed to realize the 

nano-scale selective area growth mask for Scheme A and the nanopillar substrates for 

Scheme B as introduced in Sections 1.2.4.1 and 1.2.4.2 respectively. The techniques 

combine wafer-scale Step and Flash Nanoimprint Lithography (S-FIL) with some 

pattern transfer methods to alleviate certain shortcomings of S-FIL and provide 

greater flexibility to the nanopatterning process. The imprinted features for Scheme A 

are nanopores while that of Scheme B are nanopillars/nanostuds. Examples of these 

are shown in Figure 4.1(a) and (b) respectively.  

 

 

Figure 4.1 Schematic showing the two categories of patterns formed in S-FIL, namely (a) 

nanopores which are used in Scheme A, and (b) nanopillars which are used in Scheme B.  

 

4.2. Fabrication of Nano-SAG Masks on Si Substrates (Scheme A) 

The basic fabrication process of nano-SAG dielectric masks on Si substrates for Type 

A templates using S-FIL is shown in Figure 4.2. Essentially, the Si substrate (with the 

buffer and/or device structure) is deposited with a dielectric layer, e.g. SiNy or SiO2. 

S-FIL is then performed as described in Section 3.2.2 to form S-FIL patterns. These 

are transferred to the underlying dielectric via CHF3 or CF4 based reactive ion etching 

(RIE). The S-FIL resist is then removed to reveal the patterned dielectric mask.  
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Figure 4.2 Schematic showing the fabrication of nano-SAG dielectric mask on Si substrate 

(Type A) using S-FIL and RIE. Buffer and device structure in Si substrate are not shown. 

 

4.2.1. Challenges to Uniform and Deep Pattern Transfer in S-FIL 

S-FIL is a wafer-scale, low pressure imprint process in which the resist pattern is 

defined by the space between the surface relief features of the mould and the 

topography of the substrate when they are brought into close proximity. The low 

imprint pressure, and rigidity of the mould implies that the latter does not readily 

conform to the general topography of the substrate. Particles, surface undulations and 

non-parallel alignment of the mould and substrate surfaces can lead to incomplete 

pattern transfer and non-uniform residual layer thickness (RLT) during S-FIL. Thus, 

substrate attributes such as cleanliness, low wafer bow and warp, flat and smooth 

topography, and proper mould-substrate leveling in S-FIL are desired. However, RLT 

variation is inevitable as it is impossible to have an ideal flat surface that is perfectly 

leveled relative to the mould and free of particles. Further, non-uniform capillary 

action and inhomogeneous resist spreading associated with puncturing the resist with 

high aspect ratio, pillar-patterned moulds during S-FIL exacerbate RLT variation. For 

the 300nm-period hexagonal array of pores (~ 140 nm diameter, ~ 300 nm depth) 

replicated by a pillar-patterned S-FIL mould employed in this section, the impact of 

RLT variation and RIE duration on the imprinted profile is shown in Figure 4.3.  
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Figure 4.3 Evolution of S-FIL imprinted profile (cross-section) with duration of O2 RIE for 

different initial residual layer thickness.  

 

Using extended RIE duration to clear off the thick residual layer in one region of the 

imprinted area will unavoidably result in over-etching in regions with thinner residual 

layer. In cases where the RLT variation is greater than the maximum imprint depth, 

destruction of the imprinted pattern in these regions may result as seen in Figure 4.4. 

Even if the imprinted patterns are not destroyed, widening of pore sizes can occur. 

This will eventually be transferred to the underlying layer. Figure 4.5 shows the case 

where uneven substrate topography leads to RLT variation and non-uniform widening 

of pores in the underlying dielectric layer following pattern transfer. It is important to 

note that RLT variation is shown to be caused by substrate topography in Figure 4.5 

and subsequent Figures. This has been greatly exaggerated for illustration purposes. 

Typically, the RLT variation is on the order of a few hundred nm’s per cm and will 

not be visible in a high magnification SEM image. Also, RLT variation may also be 

caused by non-uniform capillary action and inhomogeneous resist spreading in S-FIL. 

These effects are related to mould design and not explicitly shown in the Figures.  

 

Further, due to the inadequate etch resistance of the S-FIL pattern, the maximum 

depth of pattern transfer to the dielectric layer is limited (a few tens of nm for ~ 300 
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nm of S-FIL mould relief). Hence, a technique to reduce the impact of RLT variation 

and S-FIL pattern etch resistance is desired to improve the yield, controllability and 

depth of the S-FIL pattern transfer process. 

 

 

Figure 4.4 Evolution of S-FIL imprinted profile (plan view) with duration of O2 RIE for 

different initial residual layer thickness.  

 

 

Figure 4.5 Variation of SiNy dielectric pore size after pattern transfer. This is due to variation 

in residual layer thickness which causes variation in pore widening during O2 RIE. 

 

4.2.2. Uniform and Deeper Pattern Transfer in S-FIL using an Angled 

Deposited Metal Mask 

To reduce the dependency on mould, resist and substrate attributes, and leveling in S-

FIL, an additional step to the basic process flow is proposed. Summarily, a thin layer 

of Ti metal (~ 20 nm) is deposited over the top of the S-FIL resist pattern. This is 
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achieved by positioning the S-FIL patterned substrate at an angle to the incoming Ti 

flux during deposition and rotating it about its normal such that Ti uniformly coats 

the top and rim of the pores as seen in Figure 4.6. The deposited Ti mask effectively 

protects the S-FIL imprinted features during prolonged O2 RIE for complete residual 

layer removal and significantly improves the uniformity and yield of pattern transfer.  

 

 

Figure 4.6 Schematic of the modified nano-SAG mask fabrication process involving angled 

deposition of a Ti mask to achieve uniform pattern transfer despite RLT variation. 

 

Moreover, the Ti/S-FIL mask is more resistant to subsequent RIE for pattern transfer 

to the underlying dielectric layer. Previously, SiNy dielectric layers could be etched to 

a depth 60 nm but with significant variation in pore diameters over the imprinted area 

using just the S-FIL mask. With the Ti/S-FIL mask and an optimized dry etching 

chemistry of CHF3 and Ar, the etched depth in SiNy can be extended up to ~ 430 nm 

over the entire imprint area for pores ~ 200 nm in diameter. The same etch chemistry 

may also be used to etch SiO2. FESEM images of a SiNy dielectric pattern fabricated 

by this method showing the deep etch and vertical sidewall profiles are given in 

Figure 4.7. The bottom of the pores is concave as the etch stop with the Si substrate is 

not reached. The modified dielectric nano-SAG mask fabrication process is 

repeatable and greatly reduces the sensitivity of the process to mould, resist and wafer 

attributes, S-FIL mould-substrate leveling and RIE conditions.  
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Figure 4.7 FESEM images of a 300nm-period hexagonal array of 200nm-diameter pores 

fabricated in a SiNy layer by S-FIL and Ti masking. Plan view (left) and cross-section (right). 

 

In fact, preliminary results show that the pore diameter in the SiNy dielectric can be 

tuned to a certain extent by adjusting the conditions of the O2 RIE process. Increasing 

process pressure in O2 RIE is found to increase the level of undercut in the Ti/S-FIL 

pattern. This in turn leads to an increase in SiNy pore diameter upon CHF3/Ar-based 

RIE pattern transfer as illustrated in Figure 4.8. Such a method to control the pore 

diameter is plausible provided that RLT variation and hence spatial variation in pore 

size is small. Over the range of O2 RIE process pressures from 5 to 40 mTorr, SiNy 

pore diameters can be tuned from ~ 130 to 200 nm as seen in Figure 4.9.  

 

 

Figure 4.8 Schematic showing the mechanism by which pore size in the transferred dielectric 

pattern may be tuned in the combinatory approach of S-FIL and Ti masking. Increase in 

process pressure during O2 RIE, increases the undercut of the Ti/S-FIL mask resulting in an 

increase in the diameter of the pores etched in the dielectric layer. 
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Figure 4.9 FESEM images showing variable pore diameters (~ 130 to ~ 200 nm) etched in 

SiNy dielectric on Si substrates by varying the process pressure from 5 to 40 mTorr in the 

initial O2 RIE step in the combinatory approach of S-FIL and Ti masking.  

 

4.2.3. High Aspect Ratio Patterning using a Combinatory Approach of S-

FIL and AAO 

While a combinatory approach of S-FIL and Ti masking enables deeper dielectric 

pattern transfers, the depth is limited to a few hundred nanometers. For even deeper 

pattern transfers, an even more etch-resistant mask is required. Anodization of 

aluminum oxide (AAO) has been used extensively for nano-SAG mask patterning. 

See review in Section 2.4.5.2.1. An advantage of the AAO process is the ability to 

generate very high aspect ratio pores in thick AAO layers. However, the self-ordering 

process during anodization only allows the formation of pores with short range order. 

By combining the ability of AAO to form high aspect ratio pores and the ability of S-

FIL to perform large-area highly ordered nanopatterning, high aspect ratio nano-sized 

pores in a regular lattice pattern on a large area can be generated in AAO. The etch-

resistant nanoporous AAO may then act as a mask for high aspect ratio dielectric 

pattern transfers. The process flow of this combinatory approach is shown in Figure 

4.10. Briefly, a layer of Al (~1m) is first deposited onto the dielectric coated 

substrate. Depending on the thickness of the AAO mask required, a thinner or thicker 

layer of the metal can be deposited. S-FIL is then performed to form the polymeric 
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mask. Angled deposition of a Ti mask may be carried out if required. Removal of the 

residual layer by O2 RIE and subsequent nano-indentation of the Al layer using 

dry/wet etch to predefined the pore positions are subsequently performed. The Ti/S-

FIL mask layer is then stripped, after which anodization is carried out to generate 

high aspect ratio, highly regular AAO pores over the imprint area. A further pore 

widening step allows tunability of the pore diameter. The AAO mask can then be 

used to pattern the underlying dielectric layer to generate high aspect ratio nano-SAG 

masks for controlled nanostructured growth of InGaN. FESEM images corresponding 

to the anodization and pore widening processes are also shown in Figure 4.10. 

 

 

Figure 4.10 Fabrication of high aspect ratio, long range order AAO pores and subsequent 

pattern transfer to an underlying dielectric layer using a combinatory approach of S-FIL and 

anodization of aluminium oxide. FESEM images of the plan and cross-sectional views of 

samples after Al anodization and pore widening at 40 and 60 min are also shown. 
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4.2.4. Summary on Fabrication of Type A Templates 

In the preceding sections, three routes for the fabrication of nano-SAG masks on Si 

substrates (Type A templates) were examined: (i) the basic S-FIL process, (ii) a 

combinatory approach of S-FIL and Ti masking, and (iii) a combinatory approach of 

S-FIL and AAO. While the basic S-FIL process is simple, its sensitivity to mould, 

resist and substrate attributes, and leveling reduces the uniformity and repeatability of 

pattern transfers especially with high aspect ratio, pore-patterned moulds. The issues 

are mitigated by the combination of S-FIL with Ti-masking which also allows deeper 

dielectric pattern transfers. The depth may be further extended by combining S-FIL 

with AAO. However, the process is complex and should be judiciously employed. 

 

4.3. Nanopatterning of Si Substrates for Nanoheteroepitaxy (Scheme B) 

4.3.1. Overview 

Type B template fabrication involves the direct patterning of the Si substrate to form 

Si nanopillars for nanoheteroepitaxy. Nanopillars may be defined by wafer-scale S-

FIL as with Type A templates, but with the difference that pore-patterned moulds are 

used. While similar S-FIL challenges apply, the use of bare Si wafers for S-FIL with 

no prior layer deposition or other process steps correlates to lower RLT variation. 

This is because the absence of process steps prior to S-FIL prevents the introduction 

of additional topography or particles to the surface that would contribute to RLT 

variation. Further, as the lateral dimensions of features (pillars and pores) are 

relatively small compared to their spacing in this work, greater surface area-to-

volume ratios exist for the cavities in pore-patterned moulds compared to pillar-

patterned moulds. This is expected to facilitate more uniform capillary action. It is 

important to point out that the “surface area-to-volume ratio” pertains to the cavity 

which is being filled by resist in the mould to form the nanoimprinted pattern. For 

similar feature sizes and which are less than their spacing, it can be deduced that the 
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surface area-to-volume ratio is greater for the nanopillar pattern (imprinted by pore-

patterned mould) than the imprinted nanoporous layer (imprinted by pillar-patterned 

mould). This is because the surface area is similar but the volume is smaller in the 

former than the latter. Also, the greater “contact” area of the pore-patterned mould 

with the substrate is expected to promote more homogeneous resist spreading. These 

effects lead to lower RLT variation in S-FIL of nanopillar patterns on Si substrates 

compared to S-FIL of nanoporous patterns on dielectric-coated substrates. Hence, use 

of Ti masking to improve pattern uniformity is not absolutely necessary.  

 

As the S-FIL mask is susceptible to RIE, metal-catalyzed electroless etching (MCEE) 

which specifically etches Si may alternatively be employed for pattern transfer into 

the Si substrate. Also known as metal-assisted chemical etching (MACE), MCEE is a 

simple technique first demonstrated by Peng et al. and used to generate high aspect 

ratio Si nanostructures [290, 291]. Sidewall inclination common in RIE [292] and 

scalloping effects typical of deep RIE (DRIE) [293] are avoided in MCEE. Further, 

the process does not need expensive equipment like inductive coupled plasma-RIE or 

DRIE. Also, due to the anisotropic nature of MCEE, deep Si etching is possible. 

 

4.3.2. High Aspect Ratio Patterning of Si Substrate by S-FIL and Metal-

Catalyzed Electroless Etching (MCEE) 

Wee at al have fabricated Si nanostructures by MCEE for GaN deposition [294]. 

However, the nanostructures are disordered, and lack good size and morphology 

control. In this section, we describe a simple two-stage procedure combining S-FIL 

and MCEE to fabricate wafer-scale, near perfectly ordered Si nanostructures with 

controlled feature sizes down to sub-50nm from the Si substrate. The results of this 

have been published in ref. [295, 296]. Using this method, circular, hexagonal and 

rectangular cross-section Si nanostructures in hexagonal or square array 
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configurations with 150nm or 300nm periods (corresponding to array packing 

densities up to 5.13×10
7
 structures mm

-2
) and aspect ratio as high as 20:1 or more 

have been produced. The results clearly illustrate the high-resolution potential of S-

FIL and deep etching capabilities of MCEE. This offers a simple and fast route 

towards semiconductor nanostructure production. 

 

The process steps are summarized as follows. First, the cleaned Si substrate is 

patterned in S-FIL as described in Section 3.2.2. For this section, three different pore-

patterned quartz moulds were employed allowing the corresponding inverse 

nanopillar patterns to be defined. The replicated patterns consist of: (i) 300 nm-period 

hexagonal array of 180 nm (facet-to-facet dimension) hexagonal pillars/studs, (ii) 300 

nm-period square array of 200 nm by 100 nm rectangular pillars, and (iii) 150 nm-

period hexagonal array of 50 nm diameter circular studs. By incorporating some 

degree of lateral etching in the RIE of the residual layer, S-FIL pillars/studs can be 

narrowed, thereby providing some tunability in the dimensions of the S-FIL features. 

The patterns are shown in Figure 4.11(a)-(c). 

 

 

Figure 4.11 FESEM images of S-FIL nanoimprinted samples after O2 RIE. Inset shows the 

respective cross-sections. (a) 300 nm-period hexagonal array of 180 nm  (facet-to-facet) 

hexagonal pillars/studs, (b) 300 nm-period square array of 200 nm by 100 nm rectangular 

pillars, and (c) 150 nm-period hexagonal array of 50 nm diameter circular studs. 

 

The patterned area in each 300 nm-period mould is 10 mm  10 mm while that for the 

150 nm-period mould is 5 mm  5 mm, enabling equal sized imprints to be replicated 

over a wafer surface. A wafer nanoimprinted by S-FIL is shown in Figure 4.12. In 
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this case, 32 nanoimprinted fields were generated over the surface of a 4” Si wafer. 

The street size between fields can be varied to accommodate more or less fields. 

Furthermore, by virtue of the step-and-repeat mechanism, the NIL process can be 

extended for up to 8” wafers. 

 

 

Figure 4.12 (a) Photograph of a S-FIL nanoimprinted 4” Si wafer, and (b) FESEM image 

showing the long range order of the corresponding nanostructures of 300 nm periodicity. The 

wafer in (a) is deliberately tilted at an angle to bring out the violet blue tinge arising from the 

optical diffraction caused by the highly ordered nanoimprinted hexagonal studs. 

 

The mechanism of MCEE is well discussed in literature and will not be described at 

length here [297]. Briefly, in a solution of HF and an oxidative agent, e.g. H2O2, of 

appropriate concentrations, regions of Si that are in contact with a noble metal, such 

as Au or Ag, are etched much faster than those regions without metal coverage. This 

phenomenon arises because the noble metal acts as a catalyst facilitating the local 

injection of holes into Si resulting in its oxidation and subsequent removal by HF. 

The reaction is redox in nature and the metal “sinks” into Si creating an etched path. 

Therefore, by pre-patterning a noble metal layer on Si prior to immersion in HF/H2O2, 

patterned etched structures can be generated. The steps leading up to MCEE for the 

S-FIL studs-patterned wafers are described as follows and schematically shown in 

Figure 4.13. After removal of the residual material at the recessed regions between 

the studs by RIE, a thin layer of Au (~ 20 nm thick) acting as the catalyst is deposited 

by electron beam evaporation at a pressure of ~ 10
-6

 Torr. The wafer is then immersed 

in a solution of 4.6M HF and 0.44M H2O2 for the required time, after which the 

reaction is halted by rapid removal of the wafer from the solution and subsequent 
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immersion in deionized water. Next, the Au layer is removed in aqua regia at 70°C 

and the NIL mask stripped in boiling piranha solution to reveal the Si nanopillars. 

 

 

Figure 4.13 Schematic illustrating the generation of wafer-scale, highly-ordered Si 

nanostructures by MCEE from a S-FIL nanoimprinted Si wafer. 

 

Figure 4.14(a) shows a 4” Si wafer bearing 32 fields of hexagonal Si nanopillars in a 

hexagonal arrangement generated by the prior approach. The near perfect ordering of 

the Si nanopillars can be deduced from the optically diffracted violet-blue light when 

the wafer is tilted at an angle against a diffused white light source. The near-perfect 

long range ordering is also observed in the FESEM image of Figure 4.14(b). Figure 

4.14(c) shows the closed-up FESEM plan view of the hexagonal Si nano-pillars. The 

period of the nanopillars is 300 nm (area density of 1.28 × 10
7
 pillars mm

-2
) as 

defined by the S-FIL mould while the lateral dimensions (between opposite sides of a 

nanorod) is ~ 160 nm, a reduction from the ~ 180 nm pores in the S-FIL mould. The 

S-FIL mask which forms a cap over each nanopillar is visible in the FESEM images 

demonstrating the resistance of the material to attack by the HF/H2O2 etching solution. 

The inset of Figure 4.14(b) shows the FESEM cross-section of the Si nanopillars, 



102 

 

revealing the etched profiles, straight sidewalls and S-FIL mask caps. The height of 

the etched hexagonal Si nanopillars is approximately proportional to the etching 

duration indicating a near constant etch rate (~ 320 nm/min). By varying the time of 

etching, the height of the structures can be adjusted, thus tuning the aspect ratio. 

 

 

Figure 4.14 Wafer-scale Si nanopillars formed by the combined approach of S-FIL and 

MCEE. (a) Photograph of a 4” Si wafer consisting of 32 arrays of hexagonally ordered 

hexagonal Si nanopillars. (b)FESEM image showing the hexagonal long range order of the Si 

nanopillars. Inset shows the cross-sectional FESEM image of the Si nanopillars showing the 

relatively straight sidewalls and S-FIL mask caps. (c) FESEM close-up plan view of the Si 

nanopillars showing the NIL mask cap on the top surface of each structure. 

 

Molar concentrations of HF and H2O2, abbreviated as [HF] and [H2O2] respectively, 

other than that reported in this work (4.6M HF and 0.44M H2O2) have been used in 

our experiments. However, it is found that 4.6M HF and 0.44M H2O2 are optimal for 

rapidly generating high aspect ratio Si nanostructures with sidewalls of low porosity. 

Similar concentrations have also been used by other works reported in literature [298-

302]. The influence of [HF] and [H2O2] in fabricating Si nanostructures in MCEE has 

been discussed by Lianto et al. [298, 303].  

 

Unlike other reported Si nanostructures produced by MCEE which sports a highly 

roughened top surface due to chemical attack, with greater roughening with etch 

duration [297, 299, 300, 302, 304, 305], our technique produces Si nanostructures 

with considerably smoother top surface. As shown in Figure 4.15, the top surface of 

the Si nanostructure remains well-defined and flat after MCEE and S-FIL mask 

removal. While maintaining relatively low doping levels in the Si wafers (resistivity 
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10-20 Ω.cm) play a contributory role in slowing the progress of porosity attack, the 

preservation of the smooth top surface is more likely linked to the use of the S-FIL 

mask. The latter is formed by the UV-polymerization of a silicon-containing acrylate 

resist, the adhesion of which is strongly enhanced by the use of a planarization/primer 

layer. This is found to be highly resistant to chemical attack by both acids and bases 

with complete removal being effected by immersion in boiling piranha solution only. 

The S-FIL mask caps remain after MCEE and are shown in Figure 4.14(b)-(c). The 

observations show that under our conditions of etching, the mask offers good 

protection to the Si surface against chemical attack by the HF/H2O2 etching solution. 

 

However, a slight narrowing of the hexagonal Si nanopillars (from ~ 180 nm to ~ 160 

nm) occurs with increased etch duration (from 30 s to 180 s) as seen in Figure 4.15. 

This should be taken into consideration when fabricating Si nanostructures with low 

tolerance for dimensional deviations. While this lateral component of etching is much 

slower than the vertical component occurring at the regions of Si covered by the Au 

catalyst, thus conferring a high degree of anisotropy to the MCEE process, it will 

nonetheless impose a limit to the maximum achievable aspect ratio. Aspect ratios as 

high as 20:1 have been obtained by us, with values up to 220:1 being reported [306]. 

However, this will ultimately be limited by dissolution of the Si nanowires [299]. 

 

 

Figure 4.15 Plan view FESEM images of Si nanostructures after different etch durations with 

the S-FIL masks removed. (a) 30 s, (b) 60 s, and (c) 180 s etch durations. The top surfaces of 

the nanostructures remain smooth after the process due to a good degree of protection offered 

by the S-FIL masking layer. This contrasts with the rougher sidewalls. 
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Other S-FIL patterns may similarly be transferred into the underlying Si substrate by 

MCEE. Figure 4.16 shows the Si nanostructures (  190 nm by 95 nm rectangular 

cross-section and  46 nm diameter circular cross-section nanopillars) generated from 

the patterns in Figure 4.11(b) and Figure 4.11(c). The results demonstrate that the 

array configurations are not restricted to hexagonal arrangement alone and may be 

extended to square arrays too. In addition, the Si nanostructures may take on other 

cross-sectional shapes such as rectangular or circular profiles with feature dimensions 

down to sub-50 nm. Aspect ratios up to 20:1 or more have been achieved but the 

compliant Si nanowires have a tendency to adhere to each other due to surface 

tension forces exerted during processing resulting in partial loss of ordered 

arrangement. In all, we believe that these patterns are sufficient to demonstrate the 

versatility in nano-scale Si pattern generation of our approach for nanoheteroepitaxy. 

 

 

Figure 4.16 FESEM images of Si nanostructures fabricated by S-FIL and MCEE. (a), (b), and 

(c) show the close-up, cross-section, and overview of a 300 nm-period square array of  190 

nm by 95 nm rectangular cross-section Si nanopillars. (d), (e), and (f) show the close-up, 

cross-section, and overview of a 150 nm-period hexagonal array of sub-50 nm diameter 

cylindrical Si nanopillars. 

 

4.3.3. Summary on Fabrication of Type B Templates  

In Section 4.3.2, nanopatterning of Si substrates using a combinatory approach of S-
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FIL and MCEE for the fabrication of Type B growth templates was described. The 

approach combines the merits of the constituent methods enabling the wafer-scale 

fabrication of high aspect ratio Si nanostructures with controlled dimensions (down to 

sub-50 nm) and arrangement. The dimensional and pattern control can permit control 

over the properties of III-nitrides subsequently grown. Further, preservation of the 

smooth top surface morphology of the Si nanostructures is expected to be conducive 

for material growth. In all, these attributes make the combinatory approach of S-FIL 

and MCEE very attractive for producing Type B templates for nanoheteroepitaxy, 

considering the dearth of methods with these capabilities. 

 

 

4.4. Chapter Summary  

In this Chapter, nanopatterning techniques that have been developed for fabrication of 

Type A (nanopore arrays) and B (nanopillars arrays) growth templates were described. 

By combining S-FIL with Ti and/or AAO masking for RIE, ordered nanoporous 

dielectric of tunable pore size and depths on Si substrates can be fabricated for Type 

A templates. Further, by combining S-FIL with MCEE, Si nanostructure arrays of 

variable patterns and adjustable aspect ratio on Si substrates may be fabricated for 

Type B templates. The combination of S-FIL with various pattern transfer methods 

helps to overcome the shortcomings of S-FIL and provide greater flexibility to the 

nanopatterning process. However, to ensure a manageable scope, this work will focus 

on the use of Type A nanostructured templates which are suitable for InGaN nano 

selective area growth (nano-SAG). Nonetheless, the combinatory approach of S-FIL 

and MCEE developed for the fabrication of Type B templates remains highly 

promising for production of Si nanostructured templates in future work on 

nanoheteroepitaxy. 
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Chapter 5 Scaling InGaN Thin Films into Three-

Dimensional Nanostructures on AlN/Si(111) Substrates 

 

5.1. Introduction  

A suitable substrate for InGaN growth in this work is AlN-buffered Si(111) substrate. 

Si(111) is favored due to its trigonal symmetry which favors epitaxial growth of the 

(0001) plane in III-nitrides, as discussed in Section 2.2. The thin AlN buffer layer is 

required to prevent Ga-meltback etching and unintentional nitridation of Si during 

InGaN growth as discussed in Section 2.3.1. While the ultimate goal is to develop 

InGaN/Si tandem solar cells, where the Si substrate forms a subcell, for the purpose 

of this material study, no device architecture is incorporated in the Si substrate. 

 

In this Chapter, the scaling of InGaN thin films into three-dimensional nanostructures 

on AlN/Si(111) substrate is presented. The results of a growth study of InGaN thin 

films on the unpatterned substrates are first shown. Pre-requisite growth conditions 

and effect of growth pressure and temperature on InGaN properties are discussed. 

These results were used for templated InGaN nanostructured growth on AlN/Si(111)-

based Type A template. Characteristics of the InGaN nanostructure array grown via 

nano-SAG for a set of growth conditions is then presented and discussed in 

comparison with the control InGaN film grown on unpatterned AlN/Si(111) substrate.  

 

5.2. Growth of InGaN Films on AlN/Si(111) Substrates 

5.2.1. Experimental Procedure  

Si(111) wafers with a thin layer of separately MOCVD-grown, high-temperature 

AlN(0001) buffer layer were used as the starting substrates. These were diced into 17 

mm  17 mm square samples and cleaned ex-situ by successive ultra-sonication in 
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acetone, isopropanol, deionized (DI) water, HCl, and DI water prior to growth. The 

growth of InxGa1-xN was conducted in an Emcore/Veeco D125 vertical geometry 

rotating disk MOCVD reactor utilizing TMGa and TMIn as the Group III precursors, 

and NH3 as the Group V precursor. The samples were first annealed at 1000°C in H2 

after which the temperature was ramped down to the growth temperature T (655-

795°C). The chamber pressure P was varied in the range of 100-300 Torr. For all 

growths, the flow rates of TMIn, TMGa and NH3 were kept constant at 120 sccm, 5 

sccm, and 18 slm respectively, corresponding to a V/III ratio of 9200 and a high 

TMIn/(TMIn+TMGa) molar flow ratio rm of 0.80. During InxGa1-xN growth, N2 was 

used as the carrier gas and ambient while H2 was turned off. The duration of InGaN 

growth was kept at 12 min unless otherwise stated. The first set of InxGa1-xN growth 

was performed at a relatively low T of 655°C to improve In incorporation x and at P 

of 100, 200 and 300 Torr. It was found that the use of an elevated P (300 Torr) 

dramatically improves morphological and compositional uniformity of the alloy on 

AlN/Si(111) substrates. The results and details will be discussed later. The second 

part of the experiment involved growth at higher T but at a constant P of 300 Torr. 

The InGaN growth conditions are tabulated in Table 5-1.  

 

Table 5-1 Summary of growth conditions used in the MOCVD of InGaN film on AlN/Si(111). 

 T 

(°C) 

P 

(Torr) 

Duration 

(min) 

Flow Rate (sccm) 

 TMIn TMGa H2 N2 NH3 

Pressure 

series 

655 100 12 120 5 0 6000 18000 

655 200 12 120 5 0 6000 18000 

655 300 12 120 5 0 6000 18000 

Temperature 

series  

685 300 12 120 5 0 6000 18000 

705 300 12 120 5 0 6000 18000 

735 300 12 120 5 0 6000 18000 

765 300 12 120 5 0 6000 18000 

795 300 12 120 5 0 6000 18000 
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The morphology of the samples was examined by FESEM and tapping mode AFM 

while the crystal quality was analyzed by HR-XRD. Lastly, -PL measurement was 

performed at room temperature with a He-Cd 325nm laser as the excitation source. 

The results are published in ref. [130] and are discussed in the following sections. 

 

5.2.2. Substrate Pretreatment  

Prior to the growth of InxGa1-xN, the AlN/Si(111) substrate was annealed in-situ in the 

MOCVD reactor in H2 at 1000°C for 5 min. This substrate pretreatment was found to 

be critical for achieving InGaN epitaxial growth. Annealing of the substrate in N2 or 

NH3 for the same duration was inadequate and resulted mainly in In droplet formation 

during subsequent growth. It is likely that a thin layer of oxide exists on the AlN 

surface. This is supported by reports of the presence of oxygen bonded to Al in both 

O
2-

 and OH
-
 chemical states in air-exposed or water-exposed AlN surfaces [307-309]. 

Despite the cleaning of the substrates in dilute HCl prior to loading into the growth 

chamber, oxidation to some extent would inevitably occur during the subsequent 

rinse in DI water or transfer into the chamber. The oxidized surface would have 

interfered with epitaxial growth thus contributing to In droplet formation and 

polycrystalline deposits. The high temperature in-situ annealing process in a reducing 

H2 environment at 1000°C removes the oxidized layer, thermally cleans and prepares 

the surface for epitaxy.    

 

5.2.3. Influence of Reactor Pressure  

5.2.3.1. Composition  

Figure 5.1 shows the (0002) 2- XRD scans for the InxGa1-xN samples grown at 

655°C and at reactor pressures of 100, 200 and 300 Torr.  
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Figure 5.1 XRD (0002) 2- scans of InGaN films grown on AlN/Si(111) substrates at 

655°C with pressures of 100, 200, 300 Torr. An increase of growth pressure is correlated with 

the suppression of phase separation and In droplet formation. 

 

For all samples, the Si(111) substrate peak is clearly observed at 28.44° together with 

the AlN(0002) peak located at 36.09°. At a low growth pressure of 100 Torr, the 

InGaN film produced is compositionally non-uniform in two aspects. First, a 

substantial amount of In droplets exists, giving rise to the strong In(101) peak at 

about 32.90°. Second, considerable InGaN phase inhomogeneity is present. This 

exists in the form of InN, detected as a weaker InN(0002) peak at 31.40°, and wide 

InGaN compositional fluctuation manifested as a broad asymmetric InGaN(0002) 

peak. Increase of the growth pressure to 200 Torr, results in the significant 

suppression of the InN(0002) peak, while the In(101) peak appears to merge with the 

low In content InGaN peak and is converted into a broad but mid-indium content, 

shouldered InGaN(0002) peak. At an elevated pressure of 300 Torr, a solitary 
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InGaN(0002) peak is achieved (2 = 33.42°), indicating single phase InGaN is 

realized with suppression of InGaN phase separation and In droplet formation. 

 

5.2.3.2. Morphology  

FESEM observations corroborate with the XRD results. For the sample grown at 100 

Torr, growth appears to occur in a highly uncontrolled manner. The surface is riddled 

with In droplets of various sizes which account for the strong In(101) peak in the 2-

 XRD spectrum, and areas that are relatively much less covered during deposition. 

These features occur amidst an ensemble of interconnected tapered islands of various 

sizes and result in a highly disordered and rough morphology as seen in Figure 5.2(a)-

(b). As the growth pressure is increased to 200 Torr, the morphology smoothens and 

becomes more homogeneous as shown in Figure 5.2(c). There is a marked decrease in 

the size and density of In droplets, though a few are still discernible. At an elevated 

pressure of 300 Torr, In droplets are not observed. A dense ensemble of fine islands 

that is homogeneous over the sample surface is obtained as seen in Figure 5.2(d). 

Improved surface homogeneity arises because the overpressure facilitates uniform, 

dense nucleation over the highly lattice mismatched surface [310].  However, the 

shallow structures are indicative of a slower growth rate and may be a consequence of 

increased parasitic reactions occurring in the ambient at higher growth pressures. The 

improved InGaN compositional uniformity may be explained as follows. Consider the 

vapour-solid interface, where the input metal-organic precursors of TMIn and TMGa, 

are decomposed irreversibly according to the homogeneous reactions given by 

Equations (3-4) and (3-5) in Section 3.3.3 [268]. These are repeated here as   

 (CH3)3In (g) + 3/2 H2 (g)  In (g) + 3 CH4 (g) (5-1) 

 (CH3)3Ga (g) + 3/2 H2 (g)  Ga (g) + 3 CH4 (g) (5-2) 
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The equilibrium chemical reactions which proceed at the substrate surface to form 

InxGa1-xN are given by Equations (3-6) and (3-7). These are reiterated here as  

 In (g) + NH3 (g)  ⇌ InN (alloy) + 3/2 H2 (g) (5-3) 

 Ga (g) + NH3 (g)  ⇌ GaN (alloy) + 3/2 H2 (g) (5-4) 

A rise in the growth pressure, while maintaining the same flow rates, correspondingly 

increases the partial pressures of the various vapour species (TMIn, TMGa, NH3, N2, 

etc.) within the reactor. While the rise of TMIn partial pressure is likely to increase 

the driving force for the formation of In droplets on the surface, an increase in In(101) 

intensity is not observed in the XRD spectrum at 200 Torr. On the contrary, it is 

greatly suppressed. We postulate that the increase in growth pressure exerted a 

greater effect by favouring the forward equilibrium reaction (5-3) to convert In and 

NH3 into InN and H2, thus suppressing In droplet formation. Further, the nanoscale 

3D island growth morphology allows the strain energy to be partially released 

through elastic relaxation [311]. This improves InN incorporation within the InGaN 

alloy, and reduces InGaN phase separation or compositional fluctuation.  [70]. These 

can account for the disappearance of the InN(0002) peak and the generation of a 

solitary InGaN(0002) peak indicating that single phase InGaN is achieved. Future 

work employing a more detailed thermodynamic approach at the nanoscale would be 

useful in providing greater insight into the observed phenomenon [267, 268, 312]. 

However, the relatively low temperature grown, finely textured island morphology is 

likely to be defective and contain a significant amount of surface states. 

 

The In composition x of the single phase film was estimated by assuming it to be 

partially strained to the underlying AlN layer. The asymmetric (10.5) XRD reflection 

was obtained in addition to the symmetric (0002) XRD reflection. Using the iterative 

method described in Section 3.4.4, an In composition of x  0.40 was estimated. 
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Figure 5.2 FESEM images of InGaN films grown for 12 min on AlN/Si(111) substrates at 

655°C with pressures of (a)-(b) 100 Torr, (c) 200 Torr, and (d) 300 Torr. Inset shows a 

schematic of the cross-sectional profile of (d). 

 

5.2.4. Influence of Growth Temperature  

5.2.4.1. Structural Characteristics and Composition  

In subsequent growths, the growth pressure was maintained at 300 Torr, while the 

growth temperature was varied upwards to a maximum of 795°C, other conditions 

remaining constant. The corresponding (0002) 2- XRD scans at various 

temperatures are given in Figure 5.3. In each case, a solitary InGaN(0002) peak is 

observed, indicating single phase InGaN was achieved. However, the In composition 

x decreases with rise in temperature as depicted in the shift of the 2 angular position 

towards higher values. x were calculated as before and plotted against the temperature 

in Figure 5.4. The general monotonic decrease in x with increasing temperatures is 

attributable to the increasing equilibrium vapour pressure of N2 over InN within the 

InGaN alloy [72] as discussed in Section 2.3.4.  
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Figure 5.3 XRD (0002) 2- scans of InGaN films grown on AlN/Si(111) substrates at 300 

Torr with temperatures of 655°C, 685°C, 705°C, 735°C, 765°C, and 795°C. Single phase 

InGaN was achieved at all temperatures, with the 2 angular position increasing (or In content 

decreasing) with increasing temperature. 

 

 

Figure 5.4 Plot of the dependence of In content x and XRD (0002) 2- FWHM in InxGa1-xN 

with growth temperature. A decrease in x and FWHM with temperature increase are observed. 

Inset: (10.5) -scans of an InGaN film grown at 765°C and the AlN buffer showing the six-

fold in-plane symmetry relative to the three-fold in-plane symmetry of the Si(111) substrate. 
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The (10.5)- azimuthal scan of the InGaN film (grown at 765°C) relative to the 

AlN/Si(111) substrate is presented in the inset of Figure 5.4. The coincident six-fold 

in-plane symmetry of the (0002)-oriented InGaN and AlN layers relative to the three-

fold in-plane symmetry of the Si(111) substrate is apparent. Taken together, the XRD 

results revealed that the as-grown InGaN film can best be described as textured 

epitaxial [313] and oriented in the c-direction with a wurtzite crystal structure with 

the following epitaxial relationship with AlN on Si: InGaN(0001) [2110] || AlN(0001) 

[2110] || Si(111) [011]. This epitaxial relationship remains the same in other single 

phase samples and corresponds to that depicted in Figure 2.3. The azimuthal width of 

the InGaN peaks follows that of the underlying AlN layer and indicates that the latter 

exerts a strong influence on the growth quality of the former. An average azimuthal 

width of   7.5° is measured for both layers. The full-width-at-half-maximum’s 

(FWHMs) of the InGaN (0002) 2- curves at each growth temperature T are also 

plotted in Figure 5.4 and shows a sharp drop as T is raised from 655°C to ~ 685–

705°C. The comparatively large FWHM at ~ 655°C suggests that significant alloying, 

compositional non-uniformity and inhomogeneous strain are present [283]. Noting 

that the estimated experimental uncertainty in FWHM is ~ 0.011°, the FWHM (and 

aforementioned effects) may be considered to level off at T higher than ~ 685-705°C. 

The levelling off is contributed in part by the composition of the ternary InxGa1-xN 

alloy tending towards the binary GaN compound (reduced x). Increase in T up to 685-

705°C exerts a strong influence in improving InGaN compositional and strain 

homogeneity as growth quality is in the regime limited by T [125]. Beyond this T 

range, improvement is possibly limited by other factors, e.g. the structural quality of 

the underlying AlN layer, etc. The structural qualities of the epitaxial layers are next 

investigated by measuring the FWHM of their (0002)- rocking curves. The results 

are plotted in Figure 5.5.  
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Figure 5.5 Plot of the dependence of the FWHM of the (0002)- and (10.5)- XRD rocking 

curve with temperature T for P = 300 Torr. For both cases, an appreciable reduction in 

FWHM is observed when T is reduced to 705°C but the decrease plateaus off at higher T. 

 

The FWHM of the (0002)- rocking curve is an indicator of the extent of lattice tilt 

or density of TDs with screw component in the textured film. The observed general 

reduction of FWHM is consistent with improvements in crystal quality with higher 

growth temperature as reported in literature [72]. Increase in temperature to 705°C 

results in a notable reduction in the FWHM (from ~ 1.11° to ~ 0.71°), denoting an 

appreciable improvement in the crystal quality. Increase in temperature from 705°C 

to 795°C continues to decrease the (0002)- FWHM but the marginal reduction (or 

gain in crystal quality) diminishes with increasing temperature. A value of ~ 0.68° is 

attained at 795°C. A similar dependence of the FWHM of the asymmetric (10.5)- 

rocking curves with temperature is observed (Figure 5.5), this quantity being a 

measure of lattice tilt as well since the XRD inclination angle is low. The appreciable 

increase in crystal quality at ~ 705°C correlates to changes in morphology and 

photoluminescence measurements which are examined later. Improvement in 

properties of MOCVD-grown InGaN in the vicinity of 700°C has similarly been 

reported on GaN/sapphire [125]. 
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The range of levelled-off FWHM values (0.68° to 0.71°) of the InGaN (0002)- 

rocking curves lies in the locale of the AlN (0002)- rocking curve FWHM at 0.69°. 

Hence, we posit that at temperatures beyond  705°C, for the relatively thin InGaN 

layers (~ 29 to 45 nm), the crystal quality is in the regime limited by the buffer 

quality and lattice mismatch, such that higher temperatures are unlikely to bring about 

appreciable improvement as x approaches 0. Lower FWHMs may be afforded by 

increasing the layer thickness which improves the structural quality to a limited 

extent by coalescence and dislocation annihilation. For instance, prolonging the 

duration of growth at 765°C from 12 min to 48 min reduces the (0002)- FWHM 

further from 0.68° to  0.65°. The general inadequate structural quality is a 

consequence of the highly mismatched and defective thin AlN buffer being used but 

which cannot be avoided due to two reasons. First, to prevent Ga meltback etching 

and unintentional nitridation of the Si substrate when subjected to MOCVD growth 

temperatures. And, second, to facilitate a low-resistance InGaN/Si interface. 

 

5.2.4.2. Morphology  

The evolution in morphology of the InGaN samples with growth temperature was 

examined using FESEM and shown in Figure 5.6. The average thickness of the films 

grown at 655°C, 685°C, 705°C, 735°C , 765°C and 795°C are 48 nm, 47 nm, 45 nm, 

41 nm, 35 nm and 29 nm respectively. These values and the respective RMS surface 

roughness obtained by AFM are also included in Figure 5.6. At low temperatures (< 

705°C), the InGaN film is composed of a densely packed layer of fine InGaN islands 

in intimate contact with each other. Such a morphology seems to suggest a 

polycrystalline structure. However, due to the existence of an epitaxial relation of the 

film with the underlying AlN/Si template as described earlier, it may be more apt to 

describe the structure as highly textured epitaxial.  
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Figure 5.6 FESEM images of InGaN films grown on AlN/Si(111) substrates at 300 Torr with 

temperatures of (a) 655°C, (b) 685°C, (c) 705°C, (d) 735°C, (e) 765°C, and (f) 795°C. The 

morphology evolves from a fine granular structure to a more planarized surface dotted with 

pits as temperature increases. 

 

Increase in temperature to  705°C and above causes a notable change in morphology. 

Island density is reduced while island size is increased within a more interconnected 

morphology. The island boundaries and V-pits (recessed regions) are correspondingly 

reduced. Despite the changes in morphology, widespread coverage of the surface is 

maintained. The rough surfaces are indicative of three-dimensional growth. Samples 

grown at 765°C and 795°C register notably lower roughnesses as explained later. 

Despite the tensile stress exerted by the Si(111) substrate on the AlN buffer, a large 

lattice mismatch (~ 1.7% to 6.6%) still exists between the small lattice constant AlN 
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and the InGaN epilayer. This leads to substiantial compressive strain experienced by 

the latter. A Stranski-Krastanov growth mode is hence probable [310] where the 

stress field tends to force adatoms to coalesce and the formation of islands can 

partially relax the strain energy through elastic relaxation [311]. A change in 

temperature influences several physical processes during MOCVD. In this work, we 

posit that the key temperature-dependent parameters that bear a significant impact on 

the observed InGaN film morphology are adatom surface mobility and In species 

adsorption/desorption. The following describes the effects of these parameters on the 

morphology as temperature changes. 

 

Under lower deposition temperatures, reduced adatom mobility and diffusion length 

contribute to higher island nucleation density and smaller island sizes [311]. Further, 

a higher concentration of adsorbed In species exists at lower temperatures facilitating 

In incorporation to form higher In content InGaN. The latter presents a larger lattice 

mismatch with the underlying AlN layer which also tends to favour smaller island 

sizes for strain relaxation. The small-island growth mode and widespread coverage 

contribute to the formation of the densely packed, fine island appearance of InGaN 

under low deposition temperatures as seen in Figure 5.6(a)-(b). 

 

Increase in temperature improves the surface mobility of species, reducing island 

density but increasing island size. Desorption of In species from the surface also 

increases such that the amount of In incorporated decreases. The lower In content 

InGaN has a smaller lattice mismatch with the underlying AlN layer which permits 

larger/broader island sizes for strain relaxation. This has the effect of reducing the 

network of island boundaries and V-pits, or recessed regions where coalescence is 

incomplete. In addition, the higher evaporation of In species on the surface can cause 

a reduced growth rate. This will account for the reduction in film thickness observed. 
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We further suggest that the strain energy of lower In content and smaller lattice 

mismatched InGaN is likely reduced with the effect of delaying the onset of 3D 

growth. Hence, a slower growth rate may allow the smoother morphology prior to 3D 

growth in the Stranski-Krastanov growth mode to be observed as shown in Figure 

5.6(e)-(f) for InGaN samples grown at 765°C and 795°C. Increased surface mobility 

will also contribute to the reduced surface roughness. V-pits orginate from 

incomplete coalescene of neighbouring islands, TDs and from the underlying AlN 

layer. The net effect of an increase in temperature would be the formation of broader 

InGaN islands of lower spatial density, island boundaries and V-pits, and show a 

tendency towards coalescence. 

 

 

Figure 5.7 FESEM images of InGaN films grown on AlN/Si(111) substrates at 300 Torr and 

765°C for a prolonged growth of 48min. (a) Low magnification, and (b) high magnification. 

Inset of (a) shows the pre-existing V-pits in the underlying AlN/Si(111) substrate. 

 

Prolonging the growth duration increases the layer thickness and maintains the single 

phase nature of the epitaxial InGaN layers. Figure 5.7 shows the FESEM images of 

the morphology of an InGaN sample grown at 765°C at 300 Torr for 48 min under 

low and high magnification. The more planarized morphology of the sample grown at 

the same conditions for 12 min as shown in Figure 5.6(e) has given way to 3D growth. 

However, the surface remains homogeneous without gross defects or In droplets. The 

island size is larger due to coalescence such that island boundaries are reduced. Strain 
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relaxation afforded by the coarser 3D morphology may also explain an increase in x 

from ~ 0.073 to ~ 0.087 measured in the sample grown for 48 min. Large pits 

indicated by red arrows in Figure 5.7(a) arise from pre-existing large V-pits in the 

underlying AlN layer as seen in the inset of Figure 5.7(a). However, a faceted island 

morphology remains. 

 

5.2.4.3. Photoluminescence (PL)  

-PL measurements were performed at room temperature using a 325 nm He-Cd laser 

as the excitation source on the single phase samples. The PL spectra are plotted in 

Figure 5.8. While the XRD plots in Figure 5.3 all show single InGaN 2- (002) 

diffraction peaks and each can be fitted by a simple Gaussian function, the PL 

emission spectra are more complex. InGaN samples grown at temperatures less than 

705°C do not emit any detectable PL and are not shown. The lack of PL at growth 

temperatures lower than 705°C (or samples with In content above 20%) correlates 

with the high FWHMs of the -rocking curves (Figure 5.5), indicative of large lattice 

tilt, and a morphology consisting of fine islands with extensive island boundaries in 

the samples as seen in Figure 5.6(a)-(b). Low temperature growth (< 700°C) is often 

associated with formation of C-related impurities, N- and Ga- vacancies, and 

structural defects [125, 126]. The inadequate crystal quality and low growth 

temperatures result in a high concentration of non-radiative recombination centers 

and is responsible for the absence of detectable PL. The onset of PL occurs at ~ 

705°C and is characterized by broad band emission at wavelengths of about 470 nm 

to 620 nm characteristic of radiative recombination involving defects. This relates to 

the drop in the FWHMs of the -curves, and is consistent with a change in 

morphology towards larger island sizes. The improvement in crystal quality reduces 

the concentration of non-radiative recombination centers, thus permitting PL 

emission. Further increase in temperature beyond 705°C results in near-band-edge 
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(NBE) emission as indicated by the emergence of narrow and high intensity PL peaks. 

At 735°C, a secondary peak at 487nm is observed in addition to the primary peak at 

436 nm. The primary peak corresponds to NBE emission as confirmed by calculation 

from XRD measurement, while the secondary peak likely arises from defect-related 

emission. As temperature rises, the PL spectra are characterized by a prominently 

solitary peak that narrows in FWHM and shifts towards shorter wavelengths, 

consistent with improvement in crystal quality or reduction in defect states, and 

reduction in x respectively. A maximum intensity is observed at 765°C. The PL peak 

for 795°C is diminished due to reduced InGaN thickness. 

 

 

Figure 5.8 Room-temperature PL of the InGaN films grown at 300 Torr with temperatures 

from 705°C to 795°C. No PL was detectable for samples grown at 655°C and 685°C. 

 

5.2.5. Conclusion 

In this work, we demonstrate the growth of single phase, textured epitaxial InxGa1-xN 

(for x up to 0.40) directly on AlN/Si(111) substrates through the use of elevated 

growth pressures. Growth at 300 Torr promotes dense and uniform nucleation of 

InGaN islands, suppresses InGaN phase separation and In droplet formation. Low 

growth temperatures permitted higher In incorporation but do so at the expense of 
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crystal quality. Samples grown at temperatures lower than 705°C are characterized by 

densely packed fine islands, appreciably higher lattice tilt as indicated by a substantial 

increase in the (0002)- FWHM (from ~ 0.71° to ~ 1.11°), and absence of detectable 

room temperature PL. Increase in temperature to 705°C and above resulted in a 

notable improvement in crystal quality as shown by a change in morphology towards 

larger island sizes, drop in lattice tilt and increase in room temperature PL intensity. 

However, In content was reduced. Further increase in temperature does not improve 

the crystal quality significantly as this is now limited by the lattice mismatch with the 

underlying AlN layer. Innovative growth strategies are thus needed to overcome this 

limitation. One such strategy is nano-SAG which forms the focus of this thesis. 

 

5.3. Three-Dimensional InGaN Nanostructures on AlN/Si(111) Substrate 

5.3.1. Experimental Procedure 

In Section 5.2, pre-requisite conditions and influence of growth parameters in the 

epitaxy of single phase InGaN films on AlN/Si(111) substrates were examined. 

Taking into consideration the optimum conditions for film growth, nano selective 

area growth (nano-SAG) of three-dimensional InGaN nanostructures was performed 

on AlN/Si(111)-based Type A template. Substrate pre-annealing in H2 at 1000°C was 

employed with subsequent nano-SAG at 780°C and 300 Torr. Continuous flux 

MOCVD was still employed with other growth parameters similar to that described in 

Section 5.2.1. However, growth duration was prolonged to 48 min (instead of 12 min). 

As described in Section 4.2.2, Type A template consists of a nanoporous SiNy mask 

fabricated by S-FIL, Ti masking and RIE on AlN/Si(111) substrate. The nanoporous 

pattern comprises a highly-ordered hexagonal array of holes with diameters of ~ 210 

nm and a period of 300 nm. The close-packed axis of the array was oriented parallel 

to the [112] direction of the Si(111) substrate.  
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The objective of nanostructuring is to achieve single phase InGaN with higher In 

content and improved crystal quality. The qualities of the InGaN nanostructures are 

compared against a control InGaN thin film grown on AlN/Si(111) substrate in the 

same run. This directly tests the postulation regarding the benefits of InGaN 

nanostructuring discussed in Section 1.2.4.3.  

 

5.3.2. Morphology 

Figure 5.9(a)-(b) show the morphology of the hexagonal array of nano-SAG InGaN 

nanostructures after 48 min of MOCVD. Each nanostructure is shaped as a hexagonal 

nanopyramid that has emerged from a pore of the SiNy template. Good growth 

selectivity was obtained using the SiNy template with InGaN nucleation and growth 

confined within the template openings in the early growth stage. Truncated hexagonal 

nanopyramids totally confined within the pores were first observed as seen in Figure 

5.9(c). Each bears six inclined side facets and is topped by a V-pitted horizontal 

(0001) facet. With further growth, each truncated nanopyramid developed into a more 

complete hexagonal nanopyramid with six smooth side facets which overgrew onto 

the SiNy mask. After 48 min of growth, an average base dimension ~ 270 nm was 

achieved. The facet inclination angle was measured in TEM and AFM to be ~ 62° 

indicating that they are {1101} planes. These slow-growing, energetically stable 

planes, frequently encountered in III-nitrides growth [59, 143, 147, 203, 314], govern 

the growth morphology in accordance to Wulff’s theory [142]. A growth model is 

proposed later to account for the growth progression and other structures observed in 

TEM. 
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Figure 5.9 FESEM images of InGaN nanostructures grown via nano-SAG through a SiNy 

template on AlN/Si(111) substrates. (a) and (b) Hexagonal array of hexagonal nanopyramids 

grown for 48 min when viewed at an angle of 40° and at plan view respectively. (c) 

Hexagonal array of truncated hexagonal nanopyramids in the early growth stage of nano-SAG, 

each confined within a pore of the SiNy template and possessing a pitted horizontal top surface. 

 

Drawing upon reports on the SAG of GaN by MOCVD (see Section 2.4.3), the slow 

growth rate of the {1101} planes is related to their termination in N atoms arising 

from high V/III ratio growth conditions and Ga-polarity growth. The {1101} planes 

of the Ga-polar structures are passivated by H and thus lead to stable surfaces with 

low growth rates. The atomic configuration of Ga-polar structures is shown in Figure 

2.8. However, for MOCVD of GaN, the H-passivated surface can be destabilized 

under Ga-rich, low V/III ratio conditions as discussed in Section 2.4.5.2.1. The 

unstable surface is then susceptible to etching by H2 via Ga-H and N-H formation, 

thus aiding growth of GaN micro- or nanorods with vertical sidewalls. However, for 

the MOCVD of InN and InGaN, high V/III ratios are required to avoid In droplet 

formation. This explains the lack of reports on high aspect ratio InN and InGaN 

nanostructures grown by MOCVD. Hence, reported InN and InGaN nanostructures 

predominantly bear hexagonal pyramidal shapes [203, 212, 240] as seen in this work.  

As discussed in Section 2.4.5.2.1, reports in literature has focused on the SAG of 

GaN nanostructures “homoepitaxially” over GaN seed layers to achieve nearly 
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defect-free quality [49, 58, 61, 232, 237] and “heteroepitaxially” on AlN buffer layers 

[206]. While InGaN nanostructures have been achieved in MOCVD via SAG [219, 

221], these methods invariably involve GaN as a seed layer. To our knowledge, SAG 

of InGaN nanostructures directly on AlN/Si(111) has yet to be demonstrated. We 

posit that instead of growing InGaN into rough planar films with high defect densities 

on highly mismatched and defective AlN films, it may be more meaningful to look 

into the growth of spatially ordered, epitaxial 3D InGaN nanostructures where a 

nano-SAG approach may improve structure quality. This forms the focus of this work 

which we believe will fill a void that has yet to be addressed in the community and 

has direct implications in the development of InGaN/Si tandem solar cell applications.  

 

The morphology of the control InGaN film is shown in Figure 5.10(a)-(b) and is 

similar to that observed in Section 5.2.4.2. A regular morphology like that in SAG is 

not observed due to the absence of control over the sites for nucleation and growth. In 

the early growth stage, the InGaN film is populated with a high density of nano-scale 

pits as seen in Figure 5.10(c). The pits likely arose from pre-existing V-pits and 

dislocations in the highly defective AlN buffer layer, and the generation of new 

dislocations from the highly lattice mismatched InGaN growth. As growth proceeded, 

partial coalescence resulted in a reduction in pit density and the formation of an 

interconnected 3D faceted island morphology. The 3D growth mode, resembling the 

later stage of Stranski-Krastanov growth, allows relaxation of the strain within the 

InGaN layer. This generates a rough, undulating surface consisting of ridges and 

troughs (pits), with the undulations becoming more pronounced with growth duration. 

 



126 

 

 

Figure 5.10 FESEM images of the InGaN control film grown on AlN/Si(111) substrates. (a)-

(b) Rough undulating morphology after 48 min of growth when viewed at an angle of 40° and 

at plan view respectively. (c) High density of nano-scale pits in the early growth stage.  

 

5.3.3. Structural Characteristics 

5.3.3.1. Cross-Sectional TEM 

The structural characteristics of the InGaN samples were examined by cross-sectional 

TEM. Diffraction contrast imaging under two-beam condition in bright field (BF) and 

weak beam dark field (WBDF) was performed along the [1100] zone axis for g = 

0002 for viewing threading dislocations (TDs) with screw character. In both samples, 

the AlN buffer layer, ~ 150 nm thick, is riddled with TDs. These arise during growth 

from the mismatch in lattice parameters between AlN and Si (~ 19%).  For the control 

sample, TDs from the underlying AlN buffer layer propagate directly into the InGaN 

layer with a line direction of [0001], without bending and typically terminate in a V-

pit as seen in Figure 5.11(a)-(b) and as reported by Northrup et al. [115]. The 

calculated inclination angles (~ 62°) of the pit sidewalls with respect to the c-plane 

indicate that they are {1101} planes as observed by Liliental-Weber et al. for InGaN 

grown on GaN [69]. The high density and close proximity of pits to each other, and 

competing facet growth lead to a complex undulating surface consisting of ridges 

formed by the meeting of pit sidewalls, and troughs formed by the pits. The rough 
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morphology is also energetically favoured for strain relaxation in InGaN. TDs are 

also formed at the InGaN/AlN interface since the InGaN layer thickness (~ 140 nm) 

exceeds the critical thickness [54]. The selected area electron diffraction (SAED) 

pattern along the [2110] zone axis and the corresponding high-resolution TEM (HR-

TEM) image of the InGaN/AlN interface are shown in Figure 5.11(c) & (d) 

respectively. The later reveals the defects formed at the InGaN interface due to lattice 

mismatch growth. 

 

 

Figure 5.11 Cross-sectional TEM images of the InGaN control film. (a) Bright field, and (b) 

weak beam dark field images along the [1100] zone axis with g = 0002. The dotted red lines in 

(b) delineate the threading dislocations (TDs) propagating from the underlying AlN layer into 

the InGaN film. The TDs traverse the film along the [0001] line direction and each typically 

terminates in a V-pit. (c) SAED pattern of the InGaN layer along the [2110] zone axis, and (d) 

corresponding high-resolution TEM image of the InGaN/AlN interface showing interfacial 

defects due to lattice mismatch InGaN film growth. 

 

The BF and WBDF TEM images of a nano-SAG nanopyramid are shown in Figure 

5.12(a) and (b) respectively. While TDs similarly exist due to dislocations threading 

from the defective AlN layer and generation of new TDs at the InGaN/AlN interface, 

the dislocation behavior is notably different. Three main observations can be made 

and are labelled as (1), (2) and (3) in Figure 5.12(b). First, some TDs, labelled as (1), 

in the AlN layer are “blocked” by the SiNy template and prevented from propagating 

into lateral overgrown regions of the InGaN nanostructure.  In extension, for a 

completely coalesced film, ~ 56% of the TDs would be “blocked” by the SiNy 
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template, based on the area fraction occupied by the template which bears a 

hexagonal array of circular pores. See Equation (1-1). Second, most TDs, labelled as 

(2), in a nanostructure bend towards and/or remain in the axial region, such that TDs 

are increasingly confined within the axial region as growth proceeds. The persistence 

of an axial TD to continue propagating axially has been theoretically calculated by 

Eshelby [62] and modeled by Colby et al. [58] When the TD is maintained in the 

center of a nanorod, a state of metastable equilibrium can be achieved. Active 

bending of TDs towards the central core may also be linked to the formation of an 

embedded central void within the nanopyramid which presents a free surface for TD 

termination during growth. Void formation has been observed by Cao et al. [241] in 

selective area grown GaN nanopyramids and is discussed in Section 5.3.3.2.  

 

The TD bending mechanism in the second observation is similar to that described in 

our third observation denoted as (3) in Figure 5.12. Here, TD bending towards the 

free {1101} surface of the nanopyramid occurs, albeit to a smaller extent compared to 

bending of TDs towards the axial region. This arises for TDs located approximately 

more than halfway radially outwards from the axis of the nanopyramid. The 

phenomenon is similar to that reported by Eshelby [62] and Colby et al. [58], and can 

be explained by the action of image forces which tend to pull TDs located at such 

distances out of the nanostructure. In all, the net effect of nano-SAG of InGaN 

nanopyramid on the dislocation behavior is that the regions near the six bounding 

{1101} facets away from the axial region are visibly less defective. 

 

Some of the TDs present in InGaN in the nano-SAG and control samples which are 

visible under g = 0002 retain their contrast under g = 1100 (not shown here). This 

indicates that they are of mixed character containing both screw and edge 

components. The SAED pattern along the [2110] zone axis and the corresponding 
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HR-TEM images of the nanopyramid tip, epitaxial lateral overgrown (ELO) region 

and InGaN/AlN interface are shown in Figure 5.12(c), (d), (e), and (f) respectively.  

 

 

Figure 5.12 Cross-sectional TEM images of InGaN nanopyramids grown via nano-SAG 

through a nanoporous SiNy template on AlN/Si(111) substrate. (a) Bright field (BF), and (b) 

weak beam dark field (WBDF) images along the [1100] zone axis with g = 0002 of a heavily 

dislocation-laced InGaN nanopyramid. Dotted red lines delineate the approximate positions of 

threading dislocations (TDs). Dislocation termination at the SiNy mask (1), dislocation 

congregation within the nanopyramid central core (2), and dislocation bending to the {1101} 

free surfaces of the nanopyramid can be observed (3). Thickness fringes are observed at the 

inclined sides of the nanopyramid due to significant thickness variation present at the 

intersection of the {1101} facets in this cross-section. A small void is also observed due to 

imperfect coalescence. (c) Selected area electron diffraction (SAED) pattern of the InGaN 

layer along the [2110] zone axis, and corresponding high-resolution TEM images of (d) the 

nanopyramid tip showing a stacking fault, (e) the epitaxial lateral overgrown (ELO) region 

showing the improved growth quality, and (f) the InGaN/AlN interface showing a high 

density of stacking faults and coalescing dislocations. 

 

Within a distance of ~ 20 nm from the InGaN/AlN interface, a high density of 

stacking faults and coalescing dislocations is observed. (Figure 5.12(f)) These arise 

from the highly mismatched heteroepitaxy and possibly etch damage of the AlN layer 

sustained during SiNy template fabrication. The observations contrast with that of the 

control sample which exhibit an apparently less defective interfacial region (Figure 
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5.11(d)) due to a smaller lattice mismatch (arising from a lower In content in InGaN 

as shown later) and the absence of etch damage. Despite this, crystal quality in the 

nano-SAG sample improves markedly away from the interface due to dislocation 

annihilation, relaxed growth and dislocation bending as mentioned earlier. The ELO 

or the nanopyramid {1101} facet regions are of visibly improved quality as seen in 

Figure 5.12(e). However, at the nanopyramid tip, stacking faults can be observed 

along with the congregation of TDs. (Figure 5.12(d)). 

 

5.3.3.2. Growth Model 

Considering the morphology observations in Section 5.3.2, we propose a growth 

model, as illustrated in Figure 5.13, to account for void formation. During growth, the 

incoming precursor flux impinges all over the sample surface. (Figure 5.13(a)) 

However, nucleation on the SiNy mask is destabilized such that InGaN nucleates and 

grows selectively in the unmasked regions within the pores. The destabilized adatoms 

on the mask migrates to the pores and presents an additional supply of reactant flux. 

Initially, the deposited InGaN is densely pitted like the control. But confinement of 

growth within a pore promotes the filling up of pits to form a truncated nanopyramid 

bound by six smooth slow-growing {1101} inclined sidewalls with a pitted (0001)-

top. (Figure 5.13(b)) The structure has a hexagonal base which does not follow the 

circular contour of the pore due to growth selectivity. (Figure 5.9(c)) As growth 

proceeds, the structure enlarges with an increase of {1101} sidewall area and a 

corresponding decrease in (0001) top area due to the slower growth rate in the <1101> 

direction relative to the [0001] direction. (Figure 5.13(c)) This is in accordance to 

Wulff’s theory where crystal facets with the slowest growth rate governs the 

morphology. [142] Due to the increasing sidewall area that must be traversed by the 

migrating adatoms from the SiNy mask arriving at the pore periphery to reach the 

nanopyramid center, the reactant flux and hence growth rate at the center is less than 
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that at the periphery, forming a cratered hexagonal nanopyramid. (Figure 5.13(d)) 

Over time, the crater rim coalesces but traps an embedded void. (Figure 5.13(e)) 

 

 

Figure 5.13 Schematic showing growth model of InGaN nano-SAG through a nanoporous 

SiNy mask on AlN/Si(111) substrate. In addition to vapour phase mass transport of reactants 

(vertical green arrows), adatom surface migration from the SiNy mask presents an additional 

supply of reactants (purple arrows). (a) Starting substrate. (b) Formation of pitted truncated 

nanopyramid. (c) Truncated nanopyramid grows with an increase in sidewall area and 

narrowing of top. (d) Formation of central crater due to smaller reactant flux and hence 

growth rate at the center relative to the periphery. (e) Crater rim coalesces and cuts off crater 

to form an embedded void. 
 

5.3.3.3. High-Resolution XRD 

Figure 5.14 shows the (0002) 2- high-resolution X-ray diffraction (HR-XRD) 

scans obtained in a triple axis configuration for both samples. In each case, three 

peaks are observed, namely, the Si(111) substrate peak at 28.44°, the AlN(0002) peak 

at 36.11°, and the InGaN(0002) located between them. No phase separation or In 

droplets are observed. While the InGaN(0002) peak of the control has a smaller 

spread (FWHM ~ 0.105°), the calculated In content is notably low at ~ 6.1%. In 
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contrast, the InGaN nanopyramids grown by nano-SAG showed a ~ 74% relative 

increase in In content to ~ 10.6%. However, greater compositional variation is present 

as indicated by a broader InGaN(0002) peak (FWHM ~ 0.155°).   

 

 

Figure 5.14 XRD (0002) 2- scans of (a) InGaN control grown on unpatterned AlN/Si(111) 

substrate, and (b) InGaN nanopyramid array grown via nano-SAG on AlN/Si(111). The insets 

show the respective skew symmetric (10.5)-ϕ azimuthal scans of InGaN and AlN showing the 

coincident six-fold in-plane symmetry. An epitaxial relationship of InGaN(0001) [2110] || 

AlN(0001) [2110] || Si(111) [011] can be established. 

 

The skew symmetric (10.5)-ϕ azimuthal scans, included in the inset of each (0002) 

2- spectrum in Figure 5.14, show the coincident six-fold in-plane symmetry of the 

(0002)-oriented InGaN and AlN layers, indicating that the InGaN grown on both 

samples follow the same epitaxial relationship as the underlying AlN layer. Taking 

into account, the skew symmetric (111)-ϕ azimuthal scan of the Si(111) showing the 

coincident three-fold in-plane symmetry, the following epitaxial relationship can be 

established: InGaN(0001) [2110] || AlN(0001) [2110] || Si(111) [011]. The results 
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were verified with the TEM SAED patterns. Since the base edges of the 

nanopyramids are along the <2110> directions of the hexagonal wurtzite structure, 

the orientation of the close-packed axis of the hexagonal array of pores parallel to the 

[112] direction of the Si(111) substrate (or the [1100] direction of the AlN(0001) 

buffer) allows the dense edge-to-edge packing arrangement of the nanopyramids to be 

realized as seen in Figure 5.9. This maximizes the InGaN coverage of the surface for 

light absorption. Refer to Figure 2.3 for the typical epitaxial relationship of the III-

nitrides and Si(111) substrate. 

 

5.3.4. Photoluminescence 

5.3.4.1. Temperature Dependent Photoluminescence 

The temperature dependent photoluminescence (PL) spectra of the control sample are 

shown in Figure 5.15. Two pronounced peaks I1 and I2 can be identified and suggest 

the presence of two major luminescence centers. The positions of the peaks and their 

dominance with temperature are plotted in the inset. While the lower energy peak I1 

red-shifts monotonically with temperature increase, I2 exhibits a red-blue-red shift. I1 

is likely associated with In-richer regions and the red-shift may be explained by the 

temperature dependence of the bandgap according to Varshni’s law [86]. On the other 

hand, the behavior of I2 closely resembles the S-shaped emission shift reported in 

InGaN films and has been explained by the localized character of electron-hole 

radiative recombination [285, 315, 316].  For temperatures up to 30K, I2 is the 

dominant peak. However, as temperature increases to 40K, the dominant peak 

switches from I2 to I1 and remains so until about 210K. The double-peak temperature 

dependence, similarly reported by Moon et al. [316], indicates a carrier transfer from 

the luminescent center of I2 to the more thermally stable center of I1. However, the 

dominant peak returns back to I2 at 240K, possibly due to thermal activation of non-

radiative recombination centers. 
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Figure 5.15 Temperature-dependent photoluminescence (PL) spectra of the InGaN control 

from 20K to 300K. Two pronounced peaks I1 and I2 can be discerned. The inset plots the peak 

positions and their relative dominance (dash blue lines) with temperature. I1 exhibits a 

Varshni-like red-shift, while I2 undergoes a red-blue-red shift. 

 

As discussed earlier, the InGaN control film has an undulating surface consisting of 

ridges and troughs. The former are sites of elastic relaxation [316]. Segregation of In 

to ridges is energetically favored due to a reduction of the number of compressively 

strained In-N bonds. Further, In segregation from bulk to surface may also occur due 

to favorable energetics [114, 115]. Hence, as growth proceeds, In-rich regions can be 

formed which can act as luminescent centers. It is plausible that the I1 peak is related 

to In-richer regions while the I2 peak is associated with regions of lower In content. 

The temperature dependent PL spectra of the nano-SAG sample are shown in Figure 

5.16. Peaks attributed to Fabry-Perot interference have been removed by a Fourier 

filtering technique for easier comparison [221]. However, as reference, the original 

as-acquired Fabry-Perot spectra at a few temperatures are superimposed as dash lines 

against the processed spectra.  
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Figure 5.16 Temperature-dependent photoluminescence (PL) spectra of the ordered InGaN 

nanopyramid array from 20K to 300K. Fringes caused by optical interference have been 

removed by a Fourier filtering technique for a more straightforward comparison. The 

oscillatory as-acquired spectra (short dash lines) at 30K (inset (i)), 150K, 190K and 260K are 

included as reference. Inset (i) compares the PL spectra at 20K and 30K showing a red-shift 

and intensity increase of the low energy edge. Inset (ii) plots the peak position with 

temperature, showing a double step shift. 

 

Except for a slight increase in the PL intensity of the nano-SAG sample at low 

temperatures from 20K to 30K (inset (i)), the PL intensity generally decreases with 

temperature increase due to thermal quenching [284]. The initial increase in PL 

intensity might have origins in the thermal activation of carriers to spatially localized 

bandgap minima which are more efficient radiative recombination regions. This 

accounts for the red-shift in the lower energy PL edge and its increase in intensity 

while the high energy edge remains relatively unchanged. 

 

In addition, the PL emission of the nano-SAG sample is relatively broad with photon 

energies spanning ~ 2.6 eV to ~ 3.4 eV. Interestingly, the PL peak position shifts to 
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lower photon energies in a double step manner with temperature increase as seen in 

Figure 5.16 inset (ii). Single step shift of the dominant PL peak between two peaks 

has been reported by Moon et al. [316] in compositionally non-uniform InGaN films. 

Similarly, spatial variation of In content generated during nano-SAG may account for 

the observation and may arise as follows. In incorporation efficiency is higher on 

{1101} facets than (0001) facets [115, 317]. Prior to the formation of complete 

hexagonal nanopyramids bounded by {1101} facets, the nanopyramids are truncated 

with the (0001) facet forming the top plane. In compositional variation may 

inevitably be introduced during growth due to facet-dependent In incorporation 

efficiency. Further, lower In incorporation x is expected in the bottom part of the 

nanostructure near the InGaN/AlN interface due to greater compressive strain. As 

growth proceeds, strain relaxation afforded by the availability of free surfaces in the 

nanopyramids would likely result in an increase in x [70, 318]. The increase of x with 

nano-SAG duration is directly observed in Section 6.5.2.1. Further, a spatial 

difference in growth rate, indicated by incomplete coalescence or void formation in 

some nanopyramids, during nano-SAG may also lead to non-uniform x  [240]. 

 

The higher In incorporation x of InxGa1-xN on the semipolar {1101} planes [151, 152], 

has been associated with the favorable energetics of the planes for accommodating In 

atoms [115, 153] as discussed in Section 2.4.3. As the complete InGaN nanopyramids 

are bound exclusively by {1101} facets and grow via successive deposition on the 

{1101} planes, this will contribute to greater x compared to growth on other planes. 

While the rough surface of the thin film control also contains {1101} planes, the area 

of it is considerably less than the 3D nanopyramid array. Strain relaxation of the 

highly 3D nanostructures is also expected to increase x further. This also explains the 

higher x relative to the control and accounts for the generally lower PL emission 

energies. As the mechanisms for increase in x and non-uniform In incorporation are 
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inextricably linked, the higher average x has a more gradual and broader composition 

spread, giving rise to the broader PL emission. Luminscent centers may be present 

but their emission energies are close and overlap such that multiple PL peaks are not 

observed. Carrier transfer between three major luminescent centers may account for 

the double step shift of the PL peak position with temperature increase. 

 

The normalized PL spectra of both samples at room temperature are plotted in Figure 

5.17 for direct comparison. The higher In content of the nanopyramid sample is 

apparent from the lower energy of the PL peak (at 2.962 eV) compared to that of the 

double-peaked control (at 3.117eV and 2.979eV). A broader spread of composition 

accompanies the increase as indicated by the larger FWHM of the PL peak at 

0.325eV compared to 0.278eV in the control. The results are in-line with high-

resolution XRD observations. The increase in In content with nano-SAG to form 3D 

nanostructures compared to film growth under the same MOCVD growth conditions 

affirms the benefits of such an approach.   
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Figure 5.17 Normalized room-temperature PL spectra of the InGaN control (black dash line) 

and InGaN nanopyramid array (solid red line). The higher In content InGaN nanopyramid 

array emits at lower energies over a broader range compared to the control.  

 

5.3.4.2. Arrhenius Plot 

The normalized integrated PL intensities of the control and nanopyramid samples as a 

function of reciprocal temperature are plotted in Figure 5.18. As discussed in Section 

3.4.5, the observed thermal quenching of integrated PL intensity I can be modeled by 

the Arrhenius equation (Equation (3-12)) with a variable number of thermally 

activated non-radiative recombination channels, each associated with an activation 

energy EA [285-288]. In the control sample, a good Arrhenius fit over the measured 

temperature range required two channels with EA’s of 14 meV and 131 meV, while in 

the nanopyramid sample, a single EA of 72 meV sufficed. The value of EA in the 

nanopyramid sample is similar to that obtained in InGaN films with similar In 

composition grown on GaN [316]. This was postulated to be associated with 

localization of carriers in In-rich regions and would have been generated in our 

nanopyramid samples by the mechanisms discussed earlier. In the control sample, the 

notably high EA of 131 meV may be linked to deep localization states as reported for 
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InGaN structures emitting over a comparable photon energy range [288, 319]. The 

smaller EA of 14 meV may arise from smaller potential fluctuations. Further, the 

single EA of the nanopyramid sample is situated close to the mean EA of the control 

sample. This suggests that the magnitude of local potential fluctuations occurring in 

the nanopyramid structure is relatively constant and lies between the deep and 

shallow localizations occurring in the control. The internal quantum efficiency η at 

room temperature (300K), expressed as the ratio of the integrated PL intensity at 

300K to that at 20K, for the control sample is ~ 4.4%, while that of the nanopyramids 

sample is almost four times as high at ~ 17.5%. The high η of the nanopyramids is 

indicative of its improved crystalline quality achieved by dislocation confinement to 

the axial region, dislocation bending and filtering during nano-SAG. 

 

 

Figure 5.18 Arrhenius plot of the integrated PL intensities of the InGaN control and InGaN 

nanopyramid array. Internal quantum efficiency η of the latter is ~ four times as high. 

 

5.3.5. Reflectance 

The dense hexagonal array of hexagonal InGaN nanopyramids exhibits excellent 

antireflection and light-trapping properties compared to the unpatterned control 
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sample. Unabsorbed light rays reflected off one facet of a nanopyramid will likely 

land onto the facet of a neighboring nanopyramid and have another chance at 

absorption. Considering the high refractive index of InxGa1-xN (~ 2.2 to 3.0 depending 

on x) [320], reflection losses can be significant for a bare untextured InGaN surface 

not bearing any anti-reflection coating (ARC). The 3D sculpting of InGaN can greatly 

reduce reflection lossess even without application of an ARC. The reflectance R at 

normal incidence for the samples in this work is plotted in Figure 5.19.  

 

 

Figure 5.19 Reflectance R at normal incidence of the bare AlN/Si(111) substrate (blue dash-

dot line), InGaN control (red dash line) and InGaN nanopyramid array (black continuous line). 

The anti-reflection nanopyramid  array has R < 7.3% over the absorption region (E > 2.6 eV) 

and <R> = 8.3%. This is significantly lower than the control with <R> = 23.6%. 

 

Over the absorption region (photon energy E > 2.6 eV) of the InGaN nanopyramids, 

R is less than 7.3% while average reflectance <R> remains low at 8.3% over the range 

of E corresponding to wavelength  from 300 nm to 1000 nm. For the control sample, 

as well as the AlN/Si(111) substrate, R is comparatively higher and more oscillatory. 

This is characteristic of reflectance due to thin-film interference and has been verified 

by a reflectance modeling software from Filmetrics (a thin-film metrology company). 

1.5 2.0 2.5 3.0 3.5 4.0
0

10

20

30

40

50

60

70

80
827 620 496 413 354 310

<R>
AlN

 = 38.8%

<R>
Control

 = 23.6%

<R>
Nano

 = 8.3%

Wavelength  (nm)

R
e
fl
e
c
ta

n
c
e
 R

 (
%

)

Energy E (eV)

 AlN

 Control

 Nanopyramids



141 

 

The phenomenon arises from the relatively smooth interlayers and large refractive 

index contrast between the optical media. <R> of the control sample, at 23.6%, is 

almost three times as high as the nanopyramid array. As reference, the AlN/Si(111) 

substrate has an even higher <R> of  38.8% due to its much smoother surface, as seen 

in the inset of Figure 5.7(a), and wide bandgap of AlN which, at 6.2 eV, means that 

much of the incident light is not absorbed. Pyramidal texturing is a widely used 

technique for reflection control in Si solar cells [77] and the nanopyramidal texture 

obtained during nano-SAG of InGaN may similarly be adapted for InGaN 

photovoltaic applications. 

 

5.3.6. Discussion 

For the same growth time and conditions as the unpatterned control, nano-SAG 

results in an arrangement of InGaN in the form of 3D nanostructures with improved 

characteristics such as increased In content, improved crystal quality, and reduced 

reflectance. While the initial mask deposition, patterning and etching prior to nano-

SAG presents additional process steps compared to planar film growth, these steps 

will need to be introduced if texturing or nanostructuring need to be employed at a 

later stage in the case of thin film growth. Even so, post-growth top-down etching to 

form nanostructures cannot offer the same benefits associated with strain relaxation 

and defect reduction achieved in nanostructured growth. Further, top-down etching of 

the grown material implies a waste of resources and the need for etch damage 

removal. This also signifies an initial redundant expenditure of growth time which is 

avoided in nano-SAG. In the case of the latter, following template fabrication over 

the seed layer, nano-SAG to form 3D nanostructures can be performed for deposition 

of all subsequent layers till completion of the device architecture [224, 231].  
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The qualities of nanopyramid arrays  grown by nano-SAG make such an approach 

appealing. However, admittedly, the In content reported in this work (x ~ 0.11) is 

considerably less than that optimal for InGaN/Si tandem solar cell application (x ~ 

0.46). In the next Chapter, it will be shown that x may be increased by changing the 

growth conditions. The InGaN nanopyramids typically contain TDs in the axial 

region although regions near the facets are much less defective. The TDs are due to 

heteroepitaxy and the highly defective AlN buffer layers. Axial TDs cannot be totally 

eliminated due to the metastability associated with the axial region [58, 62] but may 

be terminated at embedded voids. Nonetheless, the reported approach of nano-SAG 

using ~ 210 nm diameter nanoporous template has shown the potential of improving 

the quality of InGaN grown on AlN and increasing its In content. 

 

5.3.7. Conclusion 

Nano-SAG was used to grow InGaN nanostructures via MOCVD on AlN/Si(111)-

based Type A template. A dense, highly ordered, hexagonal array of InGaN 

hexagonal nanopyramids was achieved. Each nanopyramid, bound by six {1101} 

facets, have an average base dimension of  ~ 270 nm and a periodicity of 300 nm. 

The volume of high crystalline quality InGaN is substantially increased through 

dislocation confinement to the core region of the nanopyramid, dislocation bending to 

the free surface, and dislocation filtering by the template. This contrasts with the 

control, where dislocations thread into the InGaN layer without bending resulting in a 

defective, pitted and undulating film. The InGaN nanopyramids possess a higher In 

content of ~ 10.6% (versus ~ 6.1% in the control) and a broader In compositional 

spread due to strain relaxation effects, facet-dependent In incorporation efficiency, 

and non-uniform growth rates. This correlates with PL emission at lower energies and 

with a broader spread than the control sample. Temperature dependent PL 

measurements indicate the presence of luminescent centers arising from In-rich 
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regions for both samples. The higher quality of the InGaN nanopyramids is evidenced 

by its internal quantum efficiency which, at 17.5%, is almost four times as high as 

that of the control at 4.4%. Average reflectance over the 300 – 1000 nm wavelength 

range is also reduced to 8.3% from 23.6% due to light trapping effects.  

 

5.4. Chapter Summary 

In this Chapter, the growth of InGaN thin films on AlN/Si(111) substrates was first 

examined to establish the pre-requisite conditions and influence of growth parameters 

for obtaining single phase epitaxial InGaN. High temperature in-situ annealing of the 

AlN/Si(111) substrate in H2 at 1000°C was found to be critical to obtaining epitaxial 

growth. Further, elevated pressures (~ 300 Torr) aid in obtaining single phase InGaN 

especially at low growth temperatures, while relatively high temperatures (> 765°C) 

improves crystal quality albeit at the expense of In content. Taking these factors into 

consideration, nano selective area growth (nano-SAG) of three-dimensional InGaN 

nanostructures was performed at 780°C and 300 Torr on AlN/Si(111)-based Type A 

templates with substrate pre-annealing. Three-dimensional InGaN hexagonal 

nanopyramids in a dense hexagonal array were successfully grown.  Strain relaxation, 

dislocation confinement and filtering result in improved InGaN crystalline quality. 

Compared to the thin film control, the nanopyramid array has higher In content (~ 

10.6% vs ~ 6.1%), higher internal quantum efficiency (17.5% vs 4.4%) and 

substantially lower reflectance (8.3% vs 23.6%). The results indicate that nano-SAG 

is a promising approach to grow low reflectance, improved crystalline quality InGaN 

nanostructures with enhanced In content on AlN-buffered Si for the development of 

high efficiency InGaN/Si hybrid tandem solar cells. This affirms the initial 

proposition on the benefits of InGaN nanostructuring discussed in Section 1.2.4.3.  
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Chapter 6 Nano Selective Area Growth of InGaN 

Nanostructure Arrays 

 

6.1. Introduction  

In 0, the scaling of InGaN into three-dimensional nanopyramid arrays on 

AlN/Si(111)-based  Type A templates using nano-SAG was demonstrated. In this 

Chapter, a more detailed study on the influence of MOCVD growth conditions in the 

nano-SAG of InGaN nanopyramid arrays on the same type of templates is presented. 

The In content, morphological, structural and PL qualities of the nanopyramid arrays 

are reported. This will form a guide to obtaining InGaN nanopyramids of the desired 

properties. Lastly, results on the growth of multiple quantum wells on the inclined 

planes of the nanopyramids are reported. This demonstrates the possibility of 

fabricating core-shell nanopyramid structures for device applications. 

 

6.2. Experimental Procedures  

As with Section 5.3, AlN/Si(111)-based Type A templates were used for nano-SAG 

of InGaN with bare AlN/Si(111) substrates as the growth control. Investigation of the 

influence of growth conditions on nano-SAG of InGaN is divided into four series. In 

the first series, the effect of growth temperature over 700°C to 800°C is examined 

with the reactor pressure maintained at 300 Torr. In the second series, the influence of 

reactor pressure in the range of 70 Torr to 300 Torr is studied at a relatively high 

growth temperature of 775°C to maintain growth quality. In the third series, the effect 

of growth duration is examined. For these three growth series, the flow rates of 

precursors and gases are the same as in Sections 5.2.1 and 5.3.1, and correspond to a 

V/III ratio of 9200 and a TMIn/(TMIn+TMGa) molar flow ratio rm of 0.80. In the 

fourth series, the effect of gas flow ratio is examined. For all growths, the total gas 
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flow rate of H2, N2, and NH3 is kept at 24000 sccm, while that of TMIn and TMGa 

are kept at 120 sccm and 5 sccm respectively. Lastly, MQWs are grown on the 

inclined facets of InGaN nanopyramids to demonstrate the possibility of achieving 

core-shell device structures. Grown structures are examined by FESEM, AFM, XRD, 

-PL, reflectance spectroscopy, and/or TEM. The heights of the nanopyramid section 

in nano-SAG are at least 220 nm while the thickness of the control films is > 130 nm. 

 

Table 6-1 Summary of growth conditions used in the nano-SAG of InGaN nanostructures on 

AlN/Si(111)-based Type A templates. Four growth series, (1) to (4), are performed. 

 
T (°C) 

P 

(Torr) 

Duration 

(min) 

Flow Rate (sccm) 

 TMIn TMGa H2 N2 NH3 

(1)  

Temperature 

series  

700 300 40 120 5 0 6000 18000 

725 300 40 120 5 0 6000 18000 

750 300 40 120 5 0 6000 18000 

775 300 40 120 5 0 6000 18000 

800 300 40 120 5 0 6000 18000 

(2) Pressure 

series  

775 70 40 120 5 0 6000 18000 

775 100 40 120 5 0 6000 18000 

775 200 40 120 5 0 6000 18000 

(3) Duration 

series 

825 300 12 120 5 0 6000 18000 

825 300 72 120 5 0 6000 18000 

(4) Gas flow 

rate series 

775 300 40 120 5 1000 5000 18000 

775 300 40 120 5 0 12000 12000 

 

6.3. Influence of Growth Temperature  

6.3.1. Morphology  

For the range of growth temperatures of 700°C – 800°C, good site control for 

nucleation and growth was obtained with the nanoporous SiNy template. Nano-SAG 

at each pore resulted in the formation of an InGaN hexagonal nanopyramid bound by 

six facets. Figure 6.1 shows the FESEM images of these nanopyramids.  
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Figure 6.1 FESEM images of InGaN hexagonal nanopyramids grown on AlN/Si(111) 

substrates for 40 min at temperatures of (a) 800°C, (b) 775°C, (c) 750°C, (d) 725°C, and (e) 

700°C with a reactor pressure of 300 Torr. A few hexagonally symmetric and asymmetric 

nanopyramids are outlined in red and yellow dotted lines respectively. Temperature reduction 

is correlated to a slight increase in nanopyramid size. Incidence of incomplete apices, 

polycrystalline deposits and In droplets are increased at temperatures less than ~ 750°C. 
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The inclination of each nanopyramid facet from the basal plane is determined by 

AFM measurement to be ~ 62°, confirming that these are {1101} planes. The 

formation of these facets in SAG of InGaN has been discussed in Section 5.3.2. 

 

6.3.1.1. Size uniformity  

In general, while all nanopyramids grown under 300 Torr over the temperature range 

of 700°C to 800°C possess six sidewalls, not all sidewalls have the same size. Further, 

a slight variation in nanopyramid size is also observed. The size non-uniformity was 

investigated by examining the morphology of InGaN nanopyramids grown under 

reduced reactor pressure P. It is known that a reduction in P increases the mass 

transport of reactants through the boundary layer in MOCVD growth [321]. 

According to Lundskog et al., the increased arrival rate of adatoms will favor growth 

in the adsorption regime which will degrade uniformity [322]. On the contrary, we 

found that the size uniformity of InGaN nanopyramids is notably improved as seen in 

Figure 6.7. In another work by Miao et al., asymmetry of GaN nanopyramids of a size 

similar to our InGaN nanopyramids has been correlated to stacking fault formation 

although the reason for this is still under study [241]. While stacking faults are 

observed in our work, these are present in both asymmetric and symmetric InGaN 

nanostructures as observed in cross-section TEM. Hence, the size non-uniformity in 

our case may not be due to growth in the adsorption regime or simply stacking faults.  

 

However, the non-uniformity most definitely arises from a difference in growth rate 

among the sidewalls. Although each sidewall is composed of a slow growing {1101} 

plane with, theoretically, the same growth rate, the growth rate may be altered by 

certain sidewall features. For instance, TDs in c- and m-plane GaN create spiral 

mounts when they terminate at the surface [323, 324]. These provide a source of 

atomic steps which increases the growth rate [325]. In analogy, TD exits on the 
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nanopyramid {1101} sidewalls due to TD bending can have similar effects. The non-

equal distribution of TD exits among sidewalls can result in non-uniform sidewall 

and nanopyramid growth rates. Observations of a thicker InGaN/GaN MQW structure 

grown on a nanopyramid sidewall with TD exit in Section 6.7.3 support this premise.  

 

Noting that the diffusion coefficient D is inversely proportional to the pressure P 

[265], the improvement in uniformity when P is reduced suggests that factors relating 

to gas phase diffusion or mass transport of precursors are at work. A reduction in P 

enhances mass transport of precursors to the growing surface. The consequent rise in 

growth rate (discussed in Section 6.4.1.1) occurs over all sidewalls and may dominate 

and mitigate the effects of non-uniform defect exits on sidewall growth rates. 

 

6.3.1.2. Growth Rate  

A reduction in growth temperature T from 800°C to 700°C has several effects. From 

Figure 6.1, it is noticed that the average diameter of the nanopyramids is slightly 

increased. The increase in growth rate may be attributed to reduced In desorption as T 

decreases. As the nanopyramids enlarge and overgrow onto the mask, neighboring 

base edges approach each other and when in sufficient proximity start to coalesce. 

This manifest as a transition from straight base edges to rough coalescing growth 

fronts. See Figure 6.1(d)-(e). 

 

6.3.1.3. Growth Artefacts 

Nanopyramid arrays grown at T above ~ 750°C are generally clear of growth artefacts. 

However, reduction in T below ~ 750°C, results in the growth of polycrystals at the 

valleys between the nanopyramids, the incidence of which increases with lower T. 

See Figure 6.1. Such deposits are generally absent on the control samples (not shown). 

We posit that a combination of factors is responsible for the observation. First, the 
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energetic stability of the {1101} facets implies that adatoms are not easily 

incorporated into these slow growing planes. Second, the suppression of adatom 

desorption at low T suggests a higher concentration of adatoms but which are not 

easily incorporated into the stable {1101} planes. Third, the sharply recessed valleys 

framed by the steep {1101} slopes of adjacent nanopyramids are possible trapping 

sites of adatoms. Fourth, due to reduced surface mobility at low T [98], adatoms that 

have diffused from energetically stable {1101} facets or vapour phase diffused and 

adsorbed at the valleys are less likely to escape. Fifth, the driving force for nucleation 

is increased at lower T [326]. Consequently, the chance for adatoms at the valleys to 

nucleate, grow and form polycrystalline deposits is increased with reduced T. 

 

In addition, while incompletely coalesced apices are hardly observed for 

nanopyramids grown above ~ 750°C, these are observed at T below ~ 750°C, the 

incidence of which increases with lower T. Apical pits are inextricably correlated 

with TDs terminating at the apices of the nanopyramids. In cross-sectional TEM 

observations, apical TDs are found in almost all nanopyramids. However, the actual 

manifestation of apical pits depends on growth conditions. The latter affects adatom 

mobility, growth rate, In content x, lattice mismatch and structural quality. InGaN 

with higher x has greater lattice mismatch and poorer structural quality which tends to 

exacerbate the size of the pits. However, higher adatom mobility and faster growth 

rate promote filling up of the pits. TDs have been observed to terminate at the apices 

of nanopyramids for T > 750°C but without apical pit formation. Hence, we posit that 

the formation of apical pits at lower T is a consequence of the lower adatom surface 

mobility and higher x when T is reduced resulting in incomplete apical coalescence. 

Furthermore, at the lowest T used, In droplets are also observed at the apex of the 

nanopyramids. These likely arise from the lower cracking efficiency of NH3 at the 

low T resulting in less nitrogen or nitrogen radicals available for bonding [122, 268]. 
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6.3.2. Structural Characteristics  

6.3.2.1. Indium Content and Phase Composition 

The composition and structure of the MOCVD grown InGaN samples are analyzed 

with HR-XRD. Figure 6.2 shows the (0002) 2- XRD scans for both nanopyramid 

array and control samples grown over T from 700°C to 800°C at a P of 300 Torr.  

 

 

Figure 6.2 HR-XRD (0002) 2- scans of InGaN nanopyramid array (red line) and 

corresponding control (black line) samples grown on AlN/Si(111) substrate over the 

temperature range of 700°C to 800°C at a reactor pressure of 300 Torr. 

 

As expected, the InGaN(0002) peak shifts towards lower 2 values for both InGaN 

sample types as T is reduced from 800°C to 700°C, indicating an increase in x. This is 
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due to reduced In desorption which facilitates greater In incorporation into the lattice. 

Moreover, at each T, the nanopyramid array invariably possesses a higher x than the 

corresponding control. This is in line with our early nano-SAG results in Section 5.3 

and provides further support for a nano-SAG approach to increase x in InGaN even 

on non-conventional highly mismatched AlN buffer layers. As discussed earlier, the 

nanostructures afford strain relaxation within the wurtzite structure such that the 

larger In atoms can be more easily accommodated alongside the smaller Ga atoms 

within the lattice [57, 69-71]. Further, the more favorable energetics for In 

incorporation relative to Ga on the {1101} planes [115, 151, 152] widely exposed in 

nano-SAG of InGaN is also likely to increase x. Figure 6.3 show the variation of x 

with T for both the nanopyramid arrays and control samples. x is estimated by 

assuming that the structures are partially strained, with the c and a lattice parameters 

calculated from the (0002) and (10.5) XRD reflections [104]. 

 

 

Figure 6.3 Variation of HR-XRD estimated In content x with growth temperature T for InGaN 

nanopyramid array (red line) and corresponding control (black line) samples grown at a 

reactor pressure of 300 Torr. 

 

From the 2- XRD scans in Figure 6.2, InGaN nanopyramid arrays grown over the 

temperature range of 700°C to 800°C are generally single phase, except for the 
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2 ~ 32.9° in the scans and is consistent with the FESEM images of Figure 6.1(e). 

For the thin film control series, the onset of In droplets occurs at a higher temperature 

of ~ 725°C, and becomes more pronounced at ~ 700°C. In fact, InN is also detected at 

~ 700°C as an InN(0002) peak at 2 ~ 31.40°. The observations suggest that a nano-

SAG approach may aid in reducing phase inhomogeneity and In droplet formation. 

The smaller amount of In droplets present in the nanopyramid sample compared to 

the corresponding control film, as indicated by the lower In(101) intensity in the 

XRD, may be due to more of the In being incorporated into the lattice but may also 

partially be due to the formation of polycrystalline deposits which are not observed in 

the control film. See Figure 6.1(d)-(e). The reason for this is still under investigation. 

 

The absence of InN or improved phase homogeneity in the nanopyramid arrays may 

be related to the faceted nanopyramid morphology where exposed surfaces are 

invariably {1101} planes with low surface energy. The In droplets which are confined 

to the apices of the nanopyramids can act as sinks for excess In adatoms [124] that 

are not incorporated into the surrounding uniformly stable {1101} surfaces. While 

this may actually compete with the incorporation of In into the grown structures, such 

a phenomenon may also help in maintaining some degree of phase homogeneity. 

Metal droplets, albeit of Ga content, have also been observed at the truncated 

pyramidal tips of GaN nanorods during pulsed MOCVD growth by Liao et al. [231]. 

In our case, while continuous flux MOCVD growth is employed, the similar location 

of metal droplets at the tips of the nanostructures suggest that these sites are 

preferential areas for their formation during MOCVD. 

 

6.3.2.2. Lattice Tilt and Twist 

The full-width-at-half-maximum (FWHM) of the X-ray -rocking curve for the on-

axis symmetric (0002) and off-axis skew symmetric (20.1) reflections at each growth 
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temperature T are plotted in Figure 6.4. Due to the use of an open detector 

configuration in these XRD measurements to increase signal intensity, the FWHM’s 

may be overly broadened. Nonetheless, the parameters remain valid indicators for 

relative lattice tilt and twist respectively [104].  

 

 

Figure 6.4 Variation of the FWHM of the X-ray -rocking curve for the symmetric (0002) 

and skew symmetric (20.1) reflections over 700°C to 800°C at a reactor pressure of 300 Torr. 

The FWHMs are indicative of relative lattice tilt and twist respectively. 

 

From Figure 6.4, both parameters are observed to decrease with increase in T for the 

nanopyramid and control samples, indicating an improvement in crystal quality [72]. 

However, the rate of decrease becomes less at higher T. That is, crystal quality is 

gradually being limited by factors other than T in this regime. In particular, it is 

observed that the levelling-off values for the (0002)- rocking curve FWHM, taken 

as the 800°C FWHM values (at ~ 0.70° and ~ 0.66° for the nanopyramid and control 
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threading dislocations are a source of lattice tilt and that it propagates directly from 

the AlN buffer into the InGaN layer, the former plays a major role in limiting the 

quality of the latter. Tilt and twist are related to and have been used in formulas to 

estimate screw and edge dislocation densities respectively in GaN epitaxial thin films 

[279-281]. However, the formulas may not be directly applicable to nanostructures in 

SAG. Therefore, we restrict comparison between the films and nanostructures to the 

use of tilt and twist instead of dislocation densities. It is noted that the lowest (20.1)-

 rocking curve FWHM values (twist) for both at ~ 1.30° (for 800°C) remain notably 

higher than that for the AlN buffer layer at ~ 1.07°. This is attributable to the 

generation of new edge dislocations at the highly mismatched InGaN/AlN interface. 

 

The effect of growth temperature T on crystal quality is multi-pronged. Generally, 

higher T improve crystal quality due to increased adatom mobility into lattice sites, 

reduced interstitials and vacancies, reduced carbon contamination, and reduced defect 

densities [72, 125, 126]. In the growth of InGaN, T exerts an additional effect, due to 

the temperature sensitivity of In incorporation. Lower T increase the In content but 

also increase the dislocation densities generated at the InGaN/AlN interface due to 

the larger lattice mismatch of higher In content InGaN. The myriad of factors are 

responsible for the increase of the  rocking curve FWHM’s with T reduction. Of 

special note is that while tilt values of the nanopyramid series are higher than the 

control series in the mid-to-high temperature range, the twist values are more similar. 

Such a phenomenon has been attributed to dislocation bending effects by Moram et al. 

[104] and observed in cross-sectional TEM in Section 5.3.3.1. 

 

6.3.3. Photoluminescence  

The room temperature -PL spectra of both nanopyramid array and control samples 

excited by a 325 nm He-Cd laser are shown in Figure 6.5. A few observations can be 
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made. First, the PL spectra for both nanopyramid array and control samples are not 

composed of a single smooth Gaussian profile. While Fabry-Perot interference and 

optical phonon effects may be responsible for the more periodic features, the PL line 

shape is also a consequence of other factors affecting near band edge (NBE) emission. 

We note that both sample types are not defect-free due to the propagation of TDs 

from the underlying AlN buffer layer, generation of new TDs due to heteroepitaxial 

growth beyond the critical thickness, and presence of other defect states. These and 

other microstructural non-uniformities [118] are likely to influence NBE emission. 

 

Second, the PL emission intensity of the nanopyramid array at each growth 

temperature is substantially stronger than that of the corresponding control sample. 

The integrated PL intensities of the nanopyramid samples are at least 3.8 times as 

strong as that of the control samples. This is a consequence of the improved in-

coupling of excitation light into the material, and out-coupling of photoluminescence 

related to the pyramidal texture. The increased PL intensity is also likely a result of 

an increase in volume of better crystal quality InGaN relative to the control samples 

due to dislocation filtering by the SiNy mask, dislocation confinement to the core 

region of the nanopyramid and bending/exit of dislocations to the nanopyramid sides 

as observed in cross-sectional TEM analysis in Section 5.3.3.1. Third, for each 

growth temperature, the PL emission peak of the nanopyramid arrays invariably 

occurs at lower photon energies than the control sample. This is consistent with HR-

XRD measurement that nanopyramid arrays contain higher In content than the control. 
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Figure 6.5 Room temperature micro-photoluminescence (-PL) spectra of nanopyramid array 

(solid red line) and corresponding control (dash-dot black line) samples over the growth 

temperature range of 700°C to 800°C at a reactor pressure of 300 Torr. 

 

6.3.4. Reflectance  

The reflectance spectra at normal incidence of the samples are presented in Figure 6.6. 

As expected, not only are the spectra of the nanopyramid arrays much less oscillatory 

than that of the control films, the average reflectance <R> at ~ 7.4% to 8.6% are low, 

being less than a third of that in the control samples at ~ 25.3% to 28.9% over  of 

300 nm to 1000 nm. The strong anti-reflection properties of the nanopyramidal 

texture have been discussed in Section 5.3.5. 
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The properties of the InGaN nanopyramid arrays and the corresponding control films 

for the temperature series are summarized in Table 6-2. Low T (down to 700°C), 

allow x up to 0.28 to be achieved in nano-SAG. However, this comes at the expense 

of reduced structural quality, polycrystalline growth and In droplet formation. This 

indicates that other growth conditions may need to be employed in order to overcome 

the tradeoff. For each T, the nanopyramid array invariably possesses higher x, more 

intense PL emission (almost fourfold or more) which indicate better material quality, 

and lower reflectance (by a least a factor of three) than the control sample. These are 

similarly obtained in Section 5.3. The results show that these properties remain for 

nanopyramids grown under different T.  

 

 

Figure 6.6 Reflectance spectra at normal incidence of nanopyramid arrays (solid lines) and 

corresponding control (dash-dot lines) samples grown over the temperature range of 700°C to 

800°C at a reactor pressure of 300 Torr. The nanopyramid arrays exhibit substantially lower 

reflectance which is also less oscillatory than the thin film control samples. 
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Table 6-2 Properties of InGaN nanopyramid array and corresponding control thin film 

samples grown on AlN/Si(111) at a reactor pressure P of 300 Torr and growth temperature T 

between 700° to 800°C. 

T 

(°C) 

In content x PL peak (eV) 
Int. PL 

intensity 

ratio 

(Inano/Icon) 

Reflectance <R> 

(%) <R>control/

<R>nano Control Nano Control Nano Control Nano 

700 0.232 0.282 2.46 2.37 11.5 25.3 8.4 3.0 

725 0.136 0.219 2.54 2.47 5.3 25.6 8.6 3.0 

750 0.077 0.158 2.96 2.53 3.8 27.7 7.4 3.7 

775 0.067 0.103 3.18 2.85 6.8 28.9 7.9 3.6 

800 0.055 0.098 3.26 3.05 26.7 28.9 8.2 3.5 

  

6.4. Influence of Reactor Pressure  

As discussed in Section 5.2.3, elevated reactor pressure P (300 Torr) has been found 

to suppress phase separation and In droplet formation in the MOCVD of InGaN films 

on AlN/Si(111) substrates at low T ~ 655°C. Hence, P = 300 Torr has been adopted 

in subsequent growth runs for T up to ~ 800°C). However, the influence of lower P at 

higher T has yet to be examined (for both nano-SAG and film growth). In fact, lower 

P may aid mass transport which improves In incorporation [321]. Thus, such an 

approach is warranted.  In Section 6.3, it is noted that higher T leads to better 

morphology and structural quality but excessively high T depletes the In content. 

Bearing these considerations in mind, the subsequent set of growth runs investigating 

the influence of P on nano-SAG was performed at 775°C which is below the highest 

T (800°C) previously examined.   

 

6.4.1. Morphology  

6.4.1.1. Growth Uniformity, Growth Rate and Mass Transport  

Figure 6.7 shows the FESEM images of nanopyramid arrays grown over the range of 

P from 70 to 300 Torr at 775°C.  
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Figure 6.7 FESEM images of InGaN hexagonal nanopyramids grown on AlN/Si(111) 

substrates for 40 min at reactor pressures of (a) 300 Torr, (b) 200 Torr, (c) 100 Torr, and (d) 

70 Torr with a growth temperature of 775°C. Pressure reduction from 300 Torr is correlated to 

an improvement in homogeneity and increase in nanopyramid size (or growth rate). Some 

apical pits arising from incomplete coalescence are observed at 200 Torr and are filled out 

with further reduction in pressure or increased growth. Growing {1101} facets from 

neighboring nanopyramids that become sufficiently close start to coalesce by forming multiple 

ridges bridging the facets. Otherwise the facets remain smooth. See inset of (d). Inset scale bar 

corresponds to 300 nm. Dark contrast features or notches are observed at the sidewalls of 

some nanopyramids grown at 70 Torr and l00 Torr. 

 

From AFM, the bounding facets of the nanopyramids remain inclined at ~ 62°, 

indicating that they are still composed of {1101} planes. The three dimensional AFM 

reconstruction of the nanopyramid morphology is shown in Figure 6.8. A reduction in 
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P has a number of effects. First, as discussed in Section 6.3.1.1, the size uniformity of 

the nanopyramids is improved. Second, the growth rate is generally increased. This is 

evident by the shrinking gaps between nanopyramids, and the coalescence behavior at 

100 Torr and 70 Torr. 

 

 

Figure 6.8 AFM reconstruction of the three-dimensional morphology of the InGaN 

nanopyramid arrays grown on AlN/Si(111) substrates for 40 min at reactor pressures of (a) 

300 Torr, (b) 200 Torr, (c) 100 Torr, and (d) 70 Torr with a growth temperature of 775°C. 

AFM profile measurements of the uncoalesced nanopyramids show that the bounding facets 

are inclined at ~ 62°to the basal plane, indicating that they are {1101} planes. Coalescence 

behavior results in the formation of ridges bridging the facets and is especially obvious in (d) 

due to the higher growth rate. At abrupt, sharp edges and tips, AFM tracking of the surface is 

less accurate, and susceptible to noise introduction. This results in apparent blunting (e.g. at 

the apex of each nanopyramid) or roughening of the surface at some locations.    

 

The effect of P on mass transport in the Rotating Disc Reactor (RDR) used in this 

work can be understood as follows. For flow near a rotating disk, the velocity 

boundary-layer thickness 0 is given by 
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𝛿0 ≅ 4(

𝜂

𝜌Ω
)
1/2

 (6-1) 

where η is the dynamic viscosity, ρ is the density and  is the disk’s angular rotation 

rate [265]. Since the mass density ρ is proportional to the reactor pressure P, 0 can be 

expressed as 0  P
-1/2

. For diffusion through a mass transport boundary layer, the 

mass flux J of the precursor of interest is proportional to D/0 where D is the 

diffusion coefficient and is inversely proportional to P. Considering these 

relationships, the mass flux J can be expressed as J P
-1/2

. That is, even though the 

boundary layer thickness 0 is increased, this is more than offset by the increase in D 

since the mean time between gas phase collisions is increased as P is reduced [265]. 

Hence, the mass transport of precursors through a boundary layer becomes more 

rapid with a reduction in P. The increase in mass transport directly increases the 

growth rate as the growth conditions pertain to the viscous flow regime and is mass 

transport limited as discussed in Section 3.3.5. The dependence of the growth rate on 

T is comparatively weaker (although a slight increase with T reduction is observed as 

discussed in 6.3.1.2) and may be represented as the middle plateau segment of the 

graph in Figure 3.3 which shows the rate-limiting steps as a function of T.  

 

6.4.1.2. Coalescence Behavior  

Coalescence between the {1101} facets of adjacent nanopyramids begins when they 

are sufficiently close and manifests as ridges bridging the facets. These ridges enlarge 

with growth and roughen the nanopyramid sidewalls as seen in Figure 6.7(d) and 

Figure 6.8(d). The ridges are absent and the sidewalls remain smooth when there are 

no facets from neighboring nanopyramids that are sufficiently close as seen in Figure 

6.7(d) inset. Ridges are also observed during coalescence at longer growth durations 

(see Section 6.5.1) indicating that they are not features associated with low P. By 

adopting a nano-SAG pattern with a longer period, coalescence can be delayed to 
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allow the growth of larger nanopyramids with a greater volume of high quality 

overgrown regions. However, this will inevitably prolong the time required to achieve 

coalescence. Nonetheless, the size controllability of nano-SAG InGaN nanopyramids 

can be harnessed in the design for specific light-trapping or light-extraction properties. 

 

6.4.1.3. Growth Artefacts  

Nanopyramids grown at reactor pressure P less than 300 Torr exhibit apical pits 

and/or sidewall notches. Here, “apical pit” refers to the pit that is observed at the apex 

of some nanopyramids, while “sidewall notch” refers to the small dark contrast 

feature observed at some nanopyramid sidewalls. Some apical pits and sidewall 

notches are labelled in Figure 6.7. As discussed in Section 6.3.1.3, apical pits are 

related to the termination of central TDs though their actual manifestation depends on 

growth conditions. At 200 Torr, mainly apical pits are observed (see Figure 6.7(b)) 

similar to that observed at low growth temperatures in Figure 6.1(d)-(e). The 

occurrence of apical pits with lower P, and hence higher x (as will be explained in 

Section 6.4.2.1), supports the proposition that higher x (greater lattice mismatch and 

poorer structural quality) may contribute to apical pit formation. The smaller size of 

the apical pits in Figure 6.7(b) may be due to the higher adatom mobility afforded by 

the higher T and increased growth rate at lower P. With further reduction in P to 100 

Torr, the incidence of apical pits decreases as these fill up with increased growth rate. 

However, sidewall notches emerge as seen in Figure 6.7(c). By 70 Torr, mainly 

sidewall notches remain while apical pits are hardly observed. 

 

Features similar to the sidewall notches observed here have been reported by Winden 

et al. for InN hexagonal nanopyramids [203]. These have been attributed to slow 

coalescence and are expected to fill up with growth duration. However, we do not 

think that prolonged growth duration would lead to the eradication of the sidewall 
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features, at least under the growth conditions examined in our work. This is because 

the sidewall features are found under conditions that already promote fast growth rate 

(at low reactor pressures P albeit at higher temperature), but are ironically absent with 

slow growth rate (at higher P over the temperature range investigated). Further, 

considering that the sidewall features occur on the normally energetically stable and 

slow growing {1101} surface, normal irregularities would have been smoothened out 

during the initial stages of growth according to Wulff’s theory [142]. In other words, 

the sidewall features may not be a simple collection of uncoalesced planes but are 

structural features brought out by low pressure growth. 

 

The sidewall notches are also observed on smooth, uncoalesced nanopyramid 

sidewalls grown at 70 Torr. This rules out that they are features of coalescence. On 

the other hand, it is well known that TDs bend and emerge at the {1101} facets of 

GaN pyramids.[327] The existence of TDs inclined towards the {1101} sidewalls, or 

simply propagating along the c-axis near the axial region, is similarly observed in 

cross-sectional TEM of the InGaN nanopyramids in our work. The emerging points 

of TDs are discontinuities and have been associated with the formation of various 

features. These include hillock formation on GaN(1101) surface [328], V-pit 

formation on GaN(0001) surface [115], spiral growth on c-plane GaN[325] and m-

plane GaN [324], and nanopipes formation in GaN nanowires and rods [329]. 

Therefore, we posit that the sidewall notches might possibly be related to TDs and 

will be the subject of a future work. 

 

For nanopyramids grown at the higher pressures of 200 Torr and 300 Torr, sidewall 

notches are generally not observed. The more uniform sidewall surface may be due to 

a change in growth mechanism. The observation is in line with a work by Wernicke 

et al. for MOCVD growth on nominally on-axis (1101) GaN bulk substrates which 
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shows that the semipolar (1101) surface is planarized by growth at increased pressure 

[328]. Minor outcrops are also found in a few valleys framed by the nanopyramids 

grown at 100 and 70 Torr as seen in Figure 6.7(c)-(d). These are not ridges associated 

with coalescence behavior and are likely polycrystals similar to that in Section 6.3.1.3. 

However, the size of these is much smaller and their incidence much less due to the 

higher growth temperature in this growth series which improves adatom mobility. 

 

6.4.2. Structural Characteristics 

6.4.2.1. Indium Content and Phase Composition 

Figure 6.9 shows the (0002) 2- XRD scans for both nanopyramid array and control 

samples grown over the pressure range from 70 Torr to 300 Torr at a growth 

temperature of 775°C. For both sample types, only a single peak attributable to 

InGaN(0002) is observed in each spectrum. That is, the InGaN grown is generally 

single phase, with no other major components, like InN or In droplets. 
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Figure 6.9 HR-XRD (0002) 2- scans of InGaN nanopyramid array (red line) and 

corresponding control (black line) samples grown on AlN/Si(111) substrate over the reactor 

pressure range of 70 Torr to 300 Torr at a growth temperature of 775°C. 

 

At each growth pressure P, the InGaN(0002) peak for the nanopyramid array always 

occurs at a lower 2  value than in the control. This is evident of higher In content x 

in the nanopyramids and is attributed to strain relaxation effects and growth on {1101} 

planes, similar to the temperature growth series. With reduction in P, the InGaN(0002) 

peak in both cases shifts towards lower 2  values, indicative of increasing x. The 

increase in x (calculated as before) with decrease in P is plotted in Figure 6.10 and 

may be explained as follows. It was discussed in Section 6.4.1.1  that mass transport 

of precursors through the boundary layer is enhanced at reduced P. Coupled with the 

high molar ratio of TMIn/TMGa used, the increased mass flux of TMIn greatly 
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suppresses desorption of In, resulting in an enhancement of In incorporation into the 

grown structure. While, the TMGa flux is also increased, its influence on In 

incorporation under such conditions is not significant as shown by Kim et al. [321]. 

 

 

Figure 6.10 Variation of HR-XRD estimated In content x with growth pressure P for InGaN 

nanopyramid array (red line) and corresponding control (black line) samples grown at a 

temperature of 775°C. 

 

6.4.2.2. Lattice Tilt and Twist 

The FWHM of the X-ray -rocking curve for the on-axis symmetric (0002) and off-

axis skew symmetric (20.1) reflections (indicators for relative lattice tilt and twist 

respectively) at each P are plotted in Figure 6.11. Tilt in the control samples remains 

almost independent of P with the (0002)- rocking curve FWHM values remaining 

approximately constant at ~ 0.67°, very close to that of AlN at 0.68°. Considering that 

increase in T only provides marginal reduction in the tilt and decrease in T only 

serves to increase it, it is evident that the AlN buffer layer exerts a lower bound to the 

minimum tilt permissible, as discussed in Section 6.3.2.2. For the nanopyramid array 

series, tilt is higher compared to the thin film control as a consequence of dislocation 

bending [104]. Further, a slight increase in the (0002)- rocking curve FWHM from 

~ 0.78° to ~ 0.83° is observed as P is reduced. We note from Figure 6.7 and Figure 

6.8 that a greater extent of epitaxial lateral overgrowth (ELO) occurs as a result of the 
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consequent increased growth rate. It has been reported for selective area ELO that the 

tilt of the (0001) planes, measured by the (0002) reflection, increases at a rate of ~ 

0.6°/m from the apex [330, 331]. This appears consistent with our observations. 

 

 

Figure 6.11 Variation of the FWHM of the X-ray -rocking curve for the symmetric (0002) 

and skew symmetric (20.1) reflections over 70 Torr to 300 Torr at a growth temperature of 

775°C. The FWHMs are indicative of relative lattice tilt and twist respectively. 

 

For the control samples, lattice twist, indicated by the (20.1)- rocking curve FWHM, 

increases as P is reduced. This is an indication of a higher density of TDs with edge 

character generated by the greater lattice mismatch of higher In content InGaN 

achieved at lower P. The TDs propagate through the thin film along the c-axis and are 

generally unaffected by the higher growth rate. For the nanopyramid samples, twist is 

similar to that of the control sample at ~ 300 Torr, but increases at a decreasing rate 

with pressure reduction until ~ 150 Torr. Subsequently, it dips below the control 

values and finally decreases when pressure goes below ~ 100 Torr. The initial 

increase in twist with a reduction in pressure is due to similar reasons as the control 

samples. However, the levelling off and decrease in the twist values are consequences 
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of the more extensive epitaxial lateral overgrowth arising from the higher growth 

rates at low pressures. The overgrown region grows without the lattice mismatch and 

edge dislocations associated with growth directly over the AlN opening. The relative 

volume of improved crystal quality InGaN is thus increased. This mitigates the higher 

twist associated with increased In content InGaN grown over the opening. 

 

6.4.3. Photoluminescence 

Figure 6.12 shows the room temperature -PL spectra of both nanopyramid array and 

control samples grown over 70 – 300 Torr at 775°C. The PL spectra share some 

features with that of the temperature series in Figure 6.5. These likely arise from 

similar reasons. First, each PL spectrum generally consists of a major peak bearing 

some minor shoulders and/or secondary peaks, rather than a single smooth Gaussian 

profile. Second, the PL intensity of the nanopyramid array sample grown at each 

pressure is substantially stronger than that of the corresponding control. In fact, the 

integrated PL intensity of each nanopyramid array is at least 4.4 times as strong as 

that of the corresponding control. This is a consequence of the improved in-coupling 

of excitation light into the material, and out-coupling of photoluminescence related to 

the pyramidal texture. The increased PL intensity is also likely contributed in part by 

the increased volume of improved crystal quality InGaN in the nanopyramid array 

resulting from the dislocation behavior described in Section 6.3.3. The volume is 

further increased by the greater epitaxial lateral overgrowth occurring at low P. 

 

Additionally, some other observations need to be highlighted. First, the PL peaks of 

both the nanopyramid array and control samples shift to lower energy values with 

reduction in P. The general shift in PL emission energy is consistent with an increase 

in x due to reasons as discussed earlier in Section 6.4.2.1. Second, the 70 Torr and 

100 Torr samples emit at notably lower photon energies (1.93 eV and 2.25 eV) than 
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would have been obtained in the temperature series or through theoretical estimates 

(~ 2.41 eV and ~ 2.44 eV) for the HRXRD-estimated In content of x ~ 0.265 and ~ 

0.257 [10]. From Figure 1.2, PL emission of 1.93 eV and 2.25 eV corresponds to 

much higher x of ~ 0.415 and ~ 0.313 respectively. We note that while the 

nanopyramids in the temperature series are separated from each other in the array due 

to their slow growth rate (Figure 6.1), the nanopyramids grown at 70 Torr and 100 

Torr are partially coalesced and possess numerous ridges bridging the adjacent {1101} 

facets of neighboring nanopyramids. Since In segregation to the ridges of surface 

undulations reduces the number of compressively strained In-N bonds and is 

energetically favored [316], we posit that the In rich ridges may be responsible for the 

low PL emission energies for the 70 Torr and 100 Torr samples. 

 

 

Figure 6.12 Room temperature micro-photoluminescence (-PL) spectra of nanopyramid 

array (solid red line) and corresponding control (dashed black line) samples over the reactor 

pressure range of 70 Torr to 300 Torr at a growth temperature of 775°C. 
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XRD signals at lower 2 values (higher x) against the main InGaN peak in the (0002) 

2- XRD scans for P = 70 and 100 Torr in Figure 6.9. Third, interestingly, the 

emission peak of the control samples shifts to lower emission energies at a faster rate 

than the nanopyramids. Considering the multi-featured, broad PL spectra in the 

control samples, we posit that the lower energies of their peak emission might be 

related to In segregation induced by microstructural non-uniformity [316]. This is 

supported by SEM and AFM observations which reveal the thin film controls to be 

characterized by rough, undulating surface morphologies. The AFM root mean square 

roughness Rrms values are presented in Table 6-3. While Rrms increases only from ~ 8 

nm to ~ 11 nm with reduction in T, the increase is much greater with reduction in P, 

with Rrms increasing from ~ 8 nm to ~ 14 nm. The highly roughened morphology 

encourages In segregation to a greater extent, accounting for the lower energy PL 

emission which also occurs over a wide E range. 

 

Table 6-3 Root mean square roughness Rrms of InGaN thin film control samples grown at (a) 

300 Torr with various growth temperatures T, and (b) 775°C with various reactor pressures P. 

(a) Temperature T (°C) 700 725 750 775 800 

 Roughness Rrms (nm) 11.00 9.01 8.19 7.99 7.93 

 

(b) Pressure P (Torr) 70 100 200 300 

 Roughness Rrms (nm) 14.40 12.60 8.17 7.99 

 

6.4.4. Reflectance 

Figure 6.13 shows the reflectance spectra at normal incidence of the nanopyramid 

arrays and control thin film samples grown over the pressure range of 70 Torr to 300 

Torr at a temperature of 775°C. It is seen that the nanopyramid arrays have much 

lower and less oscillatory reflectance than the control samples. Over the wavelength 

range of 300 nm to 1000 nm, average reflectance at normal incidence <R> remains 
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low in the nanopyramid arrays at ~ 7.4% to ~ 9.0%. The highest value of 9.0% is 

contributed by the partially coalesced sample grown at 70 Torr. This indicates that the 

coalescence behavior, characterized by the roughening of the otherwise smooth 

{1101} facets of the nanopyramids, tend to disrupt the light-trapping properties of the 

array. <R> for the control samples grown at 200 Torr and 300 Torr remain high at ~ 

28.3% and ~ 28.9% respectively. However, a notable reduction in <R> to 22.3% and 

21.0% for the 100 Torr and 70 Torr samples, respectively, is observed. This arises 

from the substantial increase in the surface roughness of the samples observed in 

AFM and FESEM (not shown) with thickness which promotes light scattering. 

 

 

Figure 6.13 Reflectance spectra at normal incidence of nanopyramid arrays (solid lines) and 

corresponding control (dash-dot lines) samples grown over the pressure range of 70 Torr to 

300 Torr at a growth temperature of 775°C. The nanopyramid arrays exhibit substantially 

lower reflectance which is also less oscillatory than the thin film control samples. 

 

The general properties of the InGaN nanopyramid arrays and the corresponding thin 

film control samples for the pressure series are summarized in Table 6-4.  
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Table 6-4 Properties of InGaN nanopyramid array and corresponding control thin film 

samples grown on AlN/Si(111) at a growth temperature T of 775°C and reactor pressure P 

between 70 Torr and 300 Torr. 

P 

(Torr) 

In content x PL peak (eV) 
Int. PL 

intensity 

ratio 

(Inano/Icon) 

Reflectance <R> 

(%) <R>control/

<R>nano Control Nano Control Nano Control Nano 

70 0.223 0.265 1.81 1.93 6.8 21.0 9.0 2.3 

100 0.194 0.257 2.15 2.25 6.7 22.3 8.0 2.8 

200 0.120 0.202 2.55 2.54 4.4 28.3 7.4 3.8 

300 0.067 0.103 3.18 2.85 6.8 28.9 7.9 3.6 

 

At each reactor pressure P, the nanopyramid array invariably possesses higher In 

content x, more intense PL emission (by at least fourfold) which indicate better 

material quality, and lower reflectance (by more than a factor of 3 in the uncoalesced 

nanopyramids) than the control sample. The suitability of the InGaN nanopyramids 

over thin film structures for photovoltaic applications is thus demonstrated for a range 

of growth pressures. 

 

6.5. Influence of Growth Duration 

In the temperature and pressure growth series discussed in Sections 6.3 and 6.4, the 

duration of nano-SAG was maintained at 40 min to achieve complete InGaN 

hexagonal nanopyramids while attempting to minimize coalescence. In this Section, 

the influence of shorter (12 min) and longer (72 min) durations of InGaN nano-SAG 

on material properties is examined. Similar to the prior growths, the flow rates of 

TMGa, TMIn, and NH3 were kept at 5 sccm, 120 sccm and 18000 sccm, respectively. 

The reactor pressure P is maintained at 300 Torr while the growth temperature T is 

increased to ~ 825°C (higher than the 700 – 800°C range examined previously) to 

improve growth quality and minimize the influence of In composition variation which 

seems to increase with reduced P and T. The conditions are chosen to allow a more 

focused examination of the influence of growth duration in nano-SAG. 
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6.5.1. Morphology  

The morphology of the InGaN nanostructures grown via nano-SAG through a Type A 

SiNy nanoporous template on AlN/Si(111) substrate for 12 min and 72 min is shown 

in Figure 6.14.  

 

 

Figure 6.14 FESEM images of arrays of InGaN nanostructures grown via nano-SAG through 

a SiNy Type A template on AlN/Si(111) substrates at 300 Torr and 825°C for (a) 12 min, and 

(b) 72 min. At 12 min of nano-SAG, truncated hexagonal InGaN nanopyramids each confined 

within a pore of the SiNy template and possessing a pitted (0002) top surface are observed. By 

72 min of nano-SAG, coalescence of complete InGaN hexagonal nanopyramids occurs by the 

formation of ridges between the {1101} facets. 

 

At 12 min, truncated hexagonal InGaN nanopyramids totally confined within the 

pores are observed. With longer growth duration these develop into complete 3D 

hexagonal nanopyramid with six smooth side facets as discussed in Section 5.3.2. By 

72 min, coalescence of the InGaN nanopyramids occurs through the formation of 

ridges which bridge adjacent {1101} side facets. The observation also confirms that 

the ridge formation described in Section 6.4.1.2 is not due to the reduced P but due to 

coalescence behavior.   
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6.5.2. Structural Characteristics 

6.5.2.1. Indium Content and Phase Composition 

Figure 6.15 shows the (0002) 2- XRD scans for the nanopyramid arrays after 12 

and 72 min of nano-SAG. In each scan, only a single peak attributable to InGaN(0002) 

is observed. That is, as expected, the InGaN is generally single phase, with no other 

major components. x increases from ~ 0.026 to ~ 0.051 when nano-SAG is prolonged 

from 12 to 72 min. We point out that strain relaxation associated with thicker layers 

and coarser 3D morphologies in nano-SAG can contribute to this phenomenon. This 

is similarly observed in Section 5.2.4.2 for unpatterned growth. In addition, as 

mentioned in Section 5.3.4.1 the {1101} planes have a higher In incorporation 

efficiency than the (0001) plane [151, 152]. Hence, as the surface area of (0001) 

planes in the truncated nanopyramids diminishes with growth duration and the 

nanostructures become bound only by {1101} planes and grow via depositions on 

these planes, x also increases. The FWHM of the InGaN(0002) 2-  peak at 72 min 

of nano-SAG (~ 0.273°) is almost unchanged compared to that at 12 min (~ 0.272°), 

indicating a barely XRD-detectable change in compositional variation with prolonged 

higher temperature growth. However, minor local fluctuations in In content can still 

exist amidst the bulk phase due to the aforementioned mechanisms. These will show 

up in PL spectroscopy. 
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Figure 6.15 HR-XRD (0002) 2- scans of InGaN nanopyramid arrays grown on AlN/Si(111) 

substrate at 300 Torr and 825°C with growth durations of 12 min (black line) and 72 min (red 

line). 

 

6.5.2.2. Lattice Tilt and Twist 

Figure 6.16 shows the FWHM of the -rocking curves at different inclination angles 

 for the the nanopyramid arrays after 12 and 72 min of nano-SAG. At  = 0°, the -

FWHM (of the 0002 reflection) measures lattice tilt only, As  is increased, the -

FWHM measures an increasing component of lattice twist until  = 90°, where it 

measures twist only. Measurement of tilt and twist are important because they are 

indicators of screw and edge dislocation densities, and hence structural quality. 

However, -scans with  = 90° would entail probing a plane normal to the sample 

surface (e.g. the 1100 plane for c-oriented material) where the probing area is directly 

determined by the thickness of the grown material  Due to the low thicknesses (few 

hundred nm’s) involved, such a configuration (possible only in skew symmetry to 

avoid the XRD forbidden regions) will result in an extremely weak, if measurable, 

reflected XRD intensity. Hence, lower values of  (e.g. ~ 75° corresponding to the 

(20.1) reflection) are typically employed and used to approximate twist measurement.  
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Figure 6.16 FWHM of the -rocking curve of skew symmetric reflections at different 

inclination angles . For  = 0°, the -FWHM measures lattice tilt only. -FWHM at 

increasing  measures an increasing component of lattice twist, until  = 90° where it 

measures lattice twist only. Increasing nano-SAG duration reduces both tilt and twist. 

 

The sample with nano-SAG duration of 12 min shows higher -FWHM than the AlN 

buffer at all , indicating higher tilt and twist (or higher densities of TDs with screw 

and edge character). This is due to heteroepitaxy of InGaN on highly mismatched 

AlN and etch damge of AlN incurred during SiNy template fabrication such that the 

material deposited in the early stage is characterized by a high density of coalescing 

dislocations and stacking faults [332]. This can be seen in the cross-sectional TEM 

image of the InGaN/AlN interface in Figure 5.12(f).  

 

As growth proceeds, annihilation of coalescing dislocations with opposite Burgers 

vectors, dislocation bending and ejection partially repairs the crystal structure. For 

instance, the (0002) -FWHM of the uncoalesced nanopyramid arrays grown in the 

temperature growth series for 40 min in Section 6.3.2.2 decreases and approaches that 

of the AlN buffer at ~ 0.68° (though it still remains higher due to TD bending). In 

addition to lattice mismatch, the AlN buffer exerts a lower bound to tilt in the InGaN 

structures, because TDs with screw character from the AlN buffer propagates into the 

-10 0 10 20 30 40 50 60 70 80 90 100

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

0°

TwistTilt Increasing twist component

72 min InGaN nano-SAG

AlN Buffer

12 min InGaN nano-SAG


-F

W
H

M
 (

°)
 (

T
ilt

 a
n

d
/o

r 
T

w
is

t)

Inclination angle  (°)

(0002) (10.5) (10.2) (20.1)
90°



177 

 

InGaN nanostructures through the SiNy mask openings. Twist in the nanopyramid 

arrays remains greater than the AlN buffer due to the generation of new dislocations 

with edge character at the mismatched InGaN/AlN interface. Notwithstanding 

dislocation bending, confinement, and exit mechanisms in the nanostructures which 

increase the volume of better quality material, the volume of grown material relative 

to the length of dislocations may be inadequate to present significant reduction to the 

-FWHM values. Hence, these values remain larger than that of the AlN buffer.  

 

By prolonging the growth duration to increase the size of the nanostructures and 

facilitate coalescence, the -FWHM values for both tilt and twist can be reduced to 

even below that of the AlN buffer as seen in Figure 6.16 for 72 min of nano-SAG. 

This is in spite of higher x and hence lattice mismatch. The findings suggest that 

longer nano-SAG durations should be suitably employed to improve crystal structure.   

 

6.5.3. Photoluminescence 

Figure 6.17 shows the normalized -PL spectra at room temperature for the 

nanopyramid arrays after 12 and 72 min of nano-SAG. PL emission of the latter 

occurs at lower energies (3.279 eV vs 3.299 eV) and over a broader range (FWHM of 

0.141 eV vs 0.119 eV) due to higher x and a wider spread of x than the former, 

consistent with the discussion on XRD results in Section 6.5.2.1. However, the spread 

of PL energies for both remain narrower than that grown at lower temperatures in 

earlier sections. The correlation of purer emission in nano-SAG with higher 

temperature growth is attributed to improved structural quality and lower x which 

reduce compositional fluctuation within the InGaN alloy. In addition, the integrated 

PL intensity of the sample at 72 min of nano-SAG is ~ five times that at 12 min of 

nano-SAG due to the increased volume of material grown.  
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Figure 6.17 Normalized room-temperature -PL spectra of the of InGaN nanopyramid arrays 

grown on AlN/Si(111) substrate at 300 Torr and 825°C with growth durations of 12 min 

(black line) and 72 min (red dash line). The latter emits at lower energies over a broader range.  

 

6.5.4. Reflectance 

Figure 6.18 shows the reflectance spectra at normal incidence of the nanopyramid 

arrays with different growth durations. The reflectance at 12 min of nano-SAG is 

oscillatory with a high average reflectance <R> of ~ 20.7% because the nanopyramids 

are small and have yet to emerge from the SiNy pores. The surface remains relatively 

smooth with limited light-trapping capabilities. The light-trapping capability of 

nanopyramid arrays becomes substantial when the nanopyramids emerge from the 

SiNy pores and possess larger sizes with complete and distinct inclined sidewalls 

allowing low <R> of less than ~ 8.6% to be achieved as seen in Figure 6.6 and Table 

6-2. The roughening of the sidewalls or disruption of the hexagonal nanopyramid 

structure observed during coalescence in prolonged nano-SAG, e.g. with 72 min of 

growth duration, causes a slight deterioration of the anti-reflection properties and 

slight increase in <R> to ~ 9.7% as seen in Figure 6.18. This is similarly observed 

with shorter growth durations but high growth rates at reduced pressures as discussed 

in Section 6.4.4. The results show that proper design of the array period and growth 

duration (and hence nanopyramid size) to control coalescence is required to optimize 
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the light-trapping properties of the nanopyramid array. Table 6-5 summarizes and 

compares the properties of the samples grown with different nano-SAG durations. 

 

 

Figure 6.18 Reflectance spectra at normal incidence of InGaN nanopyramid arrays grown on 

AlN/Si(111) substrate at 300 Torr and 825°C with growth durations of 12 min (solid black 

line) and 72 min (dashed red line).  

 

Table 6-5 Properties of InGaN nanopyramid arrays grown on AlN/Si(111) substrate at 300 

Torr and 825°C with growth durations of 12 min and 72 min. 

Duration 

(min) 

In 

content x 

HR-XRD FWHM (°) PL 

peak 

(eV) 

PL 

FWHM 

(eV) 

Rel. int. 

PL 

intensity 

<R> 

(%) (0002) 

2- 

(0002) 

 

(20.1) 

 

12 0.026 0.272 0.768 1.325 3.299 0.119 1 20.7 

72 0.051 0.273 0.630 1.022 3.279 0.141 4.99 9.7 

 

6.6. Influence of Gas Flow Rate  

In the preceding Sections of 6.3, 6.4, and 6.5, the influence of growth temperature T, 

reactor pressure P and growth duration on nano-SAG have been examined in turn. In 

this section, the flow rates of the gases H2:N2:NH3 are varied from the prior flow rate 

of 0:6:18 (in slm) while the flow rates of TMGa and TMIn remain as before (with rm 

= 0.80). Two gas flow conditions are examined, namely H2:N2:NH3 of 1:5:18, and 

0:12:12. The former examines the effect of H2 on nano-SAG whilst maintaining the 
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V/III ratio and rm, while the latter examines the effect of a reduced V/III ratio whilst 

maintaining rm. In all cases, the total gas flow rate is maintained at 24000 sccm, while 

T and P are kept at 775°C and 300 Torr. Growth duration is maintained at 40 min. 

 

6.6.1. Morphology  

The morphology of the InGaN nanostructures grown via nano-SAG through Type A 

SiNy nanoporous template on AlN/Si(111) substrate and the corresponding thin film 

control for H2:N2:NH3 flow rates of 0:6:18, 1:5:18 and 0:12:12 are shown in Figure 

6.19, Figure 6.20, and Figure 6.21, respectively.  

 

 

Figure 6.19 FESEM images of (a) InGaN thin film control grown on unpatterned AlN/Si(111) 

substrate, and (b) InGaN nanopyramid array grown via nano-SAG on AlN/Si(111) substrate, 

at the H2:N2:NH3 gas flow rate of 0:6:18, T = 775°C, P = 300 Torr, and duration of 40 min. 

The images for (b) are adapted from Figure 6.1(b) and Figure 6.7(a). 

 

The images of the nanopyramid array in Figure 6.19(b) are the same as Figure 6.1(b) 

and Figure 6.7(a) since these are the same samples. The formation mechanism of the 

rough, pitted surface of the film control has been described in Section 5.2.4.2 and 

Section 5.3.3.1. Similar explanations, albeit of InGaN films grown on GaN layers, 

have also been proposed by Kim et al. [333]. 
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In order to assess the influence of H2 on nano-SAG, 1 slm of H2 was introduced into 

the MOCVD gas mixture. The flow rate of N2 was correspondingly reduced from 6 

slm to 5 slm, to maintain a constant total flow rate. In the film control, pit density was 

reduced and a more planarized morphology was obtained as seen in Figure 6.20(a).  

 

 

Figure 6.20 FESEM images of (a) InGaN thin film control grown on unpatterned AlN/Si(111) 

substrate, and (b) InGaN nanopyramid array grown via nano-SAG on AlN/Si(111) substrate, 

at the H2:N2:NH3 gas flow rate of 1:5:18, T = 775°C, P = 300 Torr, and duration of 40 min. 

The introduction of H2 results in a lower pit density and a more planarized morphology in the 

control. A lower growth rate manifested as a reduction in nanopyramid size is also discerned. 

 

The improvement in morphology with the use of H2 is consistent with reports on GaN 

growth [334]. Hexagonal nanopyramids are still obtained in nano-SAG as seen in 

Figure 6.20(b). However, a reduction in size may be discerned. This indicates a lower 

growth rate since growth duration is kept at 40 min. The H2-induced change in InGaN 

morphology may be related to a reduction in the lifetime of the reactive In species on 

the growing surface leading to a decrease in concentration of the reactive In species 

[335-337]. This will explain the reduction of growth rate. The decrease in In content 

with H2 introduction observed in XRD in Section 6.6.2.1 also lends support to this 



182 

 

explanation. As discussed earlier in Section 5.2.4.2, InGaN with lower In content will 

have a smaller lattice mismatch with the AlN buffer such that the strain energy is 

likely reduced. This has the effect of delaying the onset of 3D growth. Hence, a 

slower growth rate may allow the smoother morphology prior to 3D growth in the 

Stranski-Krastanov growth mode to be observed in the film control. 

 

Reducing the flow rate of NH3 from 18 slm to 12 slm, with a corresponding increase 

of N2 flow rate from 6 slm to 12 slm, (i.e. reducing V/III ratio from ~ 9200 to ~ 6100) 

results in a degradation of the InGaN morphology in both control and nano-SAG 

samples. Polycrystal growth is observed in the control as seen in Figure 6.21(a); 

however, the extent is greater in the nanopyramid array as seen in Figure 6.21(b).  

 

 

Figure 6.21 FESEM images of (a) InGaN thin film control grown on unpatterned AlN/Si(111) 

substrate, and (b) InGaN nanopyramid array grown via nano-SAG on AlN/Si(111) substrate, 

at the H2:N2:NH3 gas flow rate of 0:12:12, T = 775°C, P = 300 Torr, and duration of 40 min. 

The reduction of NH3 from 18 to 12 slm gives rise to polycrystal growth in both control and 

nanopyramid array. Incomplete apices are also observed in the latter. 

 

It was hoped that the greater supply of metallic Group III species relative to N with a 

reduced V/III ratio will effect a change in nano-SAG morphology from nanopyramids 
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to nanostructures with vertical sidewalls. However, nanopyramids remained, likely 

due to an insufficiently high metal flux and/or strong stability of the {1101} sidewalls. 

Polycrystals observed invariably nucleated and grew in the valleys between 

nanopyramids. Incompletely coalesced apices are also present. The morphology 

resembles that obtained at lower temperature of 700°C (see Figure 6.1(e)) except that 

In droplets are not observed. The similarity in effects of low growth temperature and 

low V/III ratio have been observed in nano-SAG of InN nanopyramids [203]. The 

absence of In droplets is likely a consequence of the higher temperature (775°C) 

which promotes their evaporation. The higher temperature also improves the cracking 

efficiency of NH3 and ensures the availability of N radicals for bonding with In and 

Ga despite the reduction in NH3 flow rate.  

 

Parasitic nucleation is increased due to the greater supply of metallic Group III 

species relative to reactive N with a reduced V/III ratio. This in turns increases the 

incidence of parasitic growth to form polycrystals in both control and nano-SAG 

samples. Polycrystals are more abundant in the latter and preferentially forms in the 

valleys between the nanopyramids because the valleys function as sinks for reactive 

species which are not incorporated into the energetically stable and slow growing 

{1101} sidewalls of the nanopyramids. The abundant supply of reactive species 

increases the chances of parasitic nuclei in these regions to grow to a suitable size and 

form polycrystals. Incomplete coalescence of the nanopyramid apices may be a 

consequence of the competition for reactive species from the polycrystals. This 

further slows down the coalescence of the apical pits which may be the termination 

points for axial TDs and is composed of stable {1101} facets.    

 

6.6.2. Structural Characteristics 

6.6.2.1. Indium Content and Phase Composition 
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Figure 6.22 shows the (0002) 2- XRD scans for the nanopyramid arrays and the 

corresponding thin film control samples for H2:N2:NH3 flow rates (in slm) of 0:6:18, 

1:5:18 and 0:12:12. For all cases, only a single peak attributable to InGaN(0002) is 

observed. That is, the InGaN is single phase. Further, higher In content x and wider 

composition range are achieved in the nanopyramid array compared to the control as 

expected and discussed in prior sections. The values are tabulated in Table 6-6. 

 

 

Figure 6.22 HR-XRD (0002) 2- scans of InGaN nanopyramid array (red line) and 

corresponding control (black line) samples grown on AlN/Si(111) substrate with H2:N2:NH3 

gas flow rate (in slm) of 0:6:18 (top), 1:5:18 (middle), and 0:12:12 (bottom). For all cases, T = 

775°C, P = 300 Torr and growth duration of 40 min were employed. 

 

Introduction of H2 to the reactant gas mixture results in a reduction of x from ~ 0.103 

to ~ 0.065 in the nanopyramid array, and from ~ 0.067 to ~ 0.045 in the control. This 

has been similarly observed by Scholz et al. [335] and Piner et al. [336] for the 
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growth of InGaN films. It has been speculated that H2 may affect the lifetime of the 

reactive In species on the growing surface due to formation of gaseous InHz or affect 

the concentration of contaminates such as C at the surface [336, 337]. These reduce 

the surface concentration of reactive In species thereby reducing In incorporation. 

 

When the NH3 flow rate is reduced from 18 slm to 12 slm with the N2 flow rate 

increased correspondingly, an increase in x, from ~ 0.103 to ~ 0.212 for the 

nanopyramid array, and from ~ 0.067 to ~ 0.097 for the thin film control sample is 

observed. The results are contrary to reports in literature which show a reduction in x 

with lower V/III ratio for InxGa1-xN films grown on GaN [128, 338, 339]. The exact 

reason for the deviation is unclear, but this might be related to the extremely rough or 

3D morphology of InGaN, in the control sample and nanopyramid array respectively, 

obtained in this work. A coarser morphology appears to favor increase in x with lower 

V/III ratio as indicated by the much greater increase of x in the the 3D nanopyramid 

array compared to the control. For both sample types, growth occurs via deposition 

on the inclined {1101} planes. Such a growth mode is evident from the MQW 

structures shown later in Section 6.7.3. A reduction of the NH3 flow rate leads to a 

lower supply of active H2 derived from NH3 decomposition [203]. This may reduce In 

desorption and facilitate In incorporation on the inclined {1101} facets which already 

possess a higher In incorporation efficiency. The much broader (0002) 2- InGaN 

peak of the nanopyramid array compared to the control might be due to a wider range 

of In composition arising from the higher x and/or greater extent of polycrystals. The 

latter are misoriented and also broadens the range of x. 

 

6.6.2.2. Lattice Tilt and Twist 

The FWHM of the (0002) and skew symmetric (20.1) -rocking curves which are 

indicative of lattice tilt and twist of the InGaN samples grown with H2:N2:NH3 gas 
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flow rate (in slm) of 0:6:18, 1:5:18, and 0:12:12 are shown in Table 6-6 along with 

other properties. The nanopyramid arrays possess higher tilt than the corresponding 

film controls while the twist remains approximately the same due to dislocation 

bending [104]. For the H2:N2:NH3 gas flow rate (in slm) of 1:5:18, a reduction of both 

tilt and twist values compared to that at 0:6:18 is achieved for both nanopyramid 

array and control sample types. The improvement in structural quality may be 

correlated to the use of H2 which is known to improve structural qualities [334], 

although this comes at the expense of a decrease in x which may also improve 

structural quality due to smaller lattice mismatch with the AlN buffer. 

 

Table 6-6 Properties of InGaN nanopyramid array and corresponding thin film control 

samples grown on AlN/Si(111) with H2:N2:NH3 gas flow rate (in slm) of 0:6:18, 1:5:18, and 

0:12:12. For all cases, T = 775°C, P = 300 Torr and growth duration of 40 min were employed. 

Gas flow rate 

(slm)  

H2:N2:NH3 

In 

content 

x 

HR-XRD FWHM (°) PL 

peak 

(eV) 

PL 

FWHM 

(eV) 

Int. PL 

intensity 

rel. to 

control 

<R> 

(%) (0002) 

2- 

(0002) 

 

(20.1) 

 

0:6:18 

Contr. 0.067 0.274 0.672 1.409 3.179 - 1 28.9 

Nano 0.103 0.304 0.757 1.437 2.852 - 6.8 7.9 

1:5:18 

Contr. 0.045 0.269 0.649 1.282 3.310 0.110 1 27.7 

Nano 0.065 0.316 0.734 1.267 3.048 0.389 3.5 8.7 

0:12:12 

Contr. 0.097 0.316 0.847 1.330 2.945 - 1 24.5 

Nano 0.212 0.434 1.462 2.274 2.373 - 0.7 7.9 

 

The control sample grown with H2:N2:NH3 gas flow rate (in slm) of 0:12:12 shows 

notably higher tilt but slightly lower twist than that with 0:6:18. The overall 

degradation in structure may be related to higher x and parasitic polycrystal growth. 

The nanopyramid array shows significantly higher FWHM of the (0002) and (20.1) 

-rocking curves than the control due to a greater extent of polycrystal growth and a 

much higher x. Misoriented crystals broaden the rocking curves and lead to inaccurate 

indication of the tilt and twist of the epitaxial material while higher x tend to be 
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correlated with poorer structural quality due to greater lattice mismatch with the 

underlying buffer layer in heteroepitaxy. 

 

6.6.3. Photoluminescence 

Figure 6.23 shows the -PL spectra at room temperature for the InGaN nanopyramid 

array and corresponding film control grown at a H2:N2:NH3 gas flow rate (in slm) of 

1:5:18. Compared to a gas flow rate of 0:6:12, H2 introduction leads to a shift in PL 

towards higher energies consistent with XRD measurement of reduced x. See Table 

6-6. Comparing between the nanopyramid array and control, the former emits at 

lower energies (3.048 eV vs 3.310 eV) over a broader range (FWHM ~ 0.389 eV vs 

0.110 eV) due to higher x (0.065 vs 0.045) and larger 2- FWHM (0.316° vs 0.269°) 

as measured in XRD. While PL and XRD measurements indicate similar trends with 

regards to In content and range, it is noticed that the FWHM of the PL peak in the 

nanopyramid array is more than 3 times that of the control (0.389 eV vs 0.110 eV), 

while the FWHM of the 2- peak is only 1.2 times (0.316° vs 0.269°). The PL is 

also multi-featured. These are due to the sensitivity of PL emission to other factors, 

e.g. optically active defects and slight composition fluctuations not detected by XRD, 

Bustein-Mose shift, optical effects such as phonon interactions, and Fabry-Perot 

interference, and strain etc. These can contribute to multi-featured, broader, and/or 

shifted PL emission peaks. Thus, while composition variation is a major factor 

affecting the FWHM of PL and XRD 2- peaks, the presence of other factors 

influencing them make direct correlation between them difficult.  
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Figure 6.23 Room-temperature -PL spectra of the InGaN nanopyramid array (solid red line) 

and corresponding thin film control (dash-dot black line) samples grown on AlN/Si(111) with 

H2:N2:NH3 gas flow rate (in slm) of 1:5:18. The introduction of H2 leads to a considerably 

narrow PL emission in the control.The InGaN nanopyramid array emits at lower energies 

despite over a broader range than the control. 

 

Introduction of H2 during MOCVD growth improves InGaN film growth quality. 

Substantial narrowing of the PL emission peak and increase in peak intensity relative 

to the nanopyramid array is evident. This is correlated to an improvement in 

morphology and structural quality as described in Section 6.6.1 and 6.6.2.2 

respectively. The improvement in PL emission of the control relative to the 

nanopyramid array with the introduction of H2 is obvious when comparing the PL 

emission of the temperature growth series (Figure 6.5) and pressure growth series 

(Figure 6.12) grown in a pure N2 environment for the same duration. The PL emission 

of the control samples in the latter two series is broader and much weaker, even at 

similar PL emission energies. However, as discussed earlier, the introduction of H2 

limits In incorporation in InGaN even though nano-SAG alleviates it to some extent. 

 

Figure 6.24 shows the -PL spectra at room temperature for the InGaN nanopyramid 

array and corresponding thin film control sample grown at a H2:N2:NH3 gas flow rate 

(in slm) of 0:12:12. Compared to a gas flow rate of 0:6:18, the decrease in NH3 flow 
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rate or decrease in V/III ratio leads to a shift in PL emission towards lower energies 

in both sample types consistent with XRD measurement of increased x. See Table 6-6. 

Comparing between the nanopyramid array and control, the former emits at lower 

energies (2.373 eV vs 2.945 eV) due to higher x as expected for nano-SAG. However, 

despite a smaller (0002) 2- FWHM than the nanopyramid array (0.316° vs 0.434°) 

the control exhibits broader PL emission. This suggests the presence of luminescent 

centers with considerable spread of In composition and hence emission energies. In 

addition, contrary to previous results, the peak PL intensity is comparable to and the 

integrated PL intensity of the nanopyramid array is less than that of the control. This 

might be attributed to the much higher In content of the nanopyramid which entails a 

larger lattice mismatch contributes partly to greater structural defects. This is 

supported by XRD measurements of higher x, greater lattice tilt and twist. See Table 

6-6. For similar x and PL emission, reduced pressure growth at high V/III ratio 

produces nanopyramid arrays of better morphology (reduced parasitic growth) and 

structural quality (lower lattice tilt and twist) as observed in Section 6.4. The results 

indicate that reduced V/III ratios may not be a suitable route for obtaining InGaN 

nanostructures with good morphological and structural properties. 
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Figure 6.24 Room-temperature -PL spectra of the InGaN nanopyramid array (solid red line) 

and corresponding thin film control (dash-dot black line) samples grown on AlN/Si(111) with 

H2:N2:NH3 gas flow rate (in slm) of 0:12:12.  

 

6.6.4. Reflectance 

Figure 6.25 shows the reflectance spectra at normal incidence of nanopyramid arrays 

and corresponding control samples grown on AlN/Si(111) with H2:N2:NH3 gas flow 

rate (in slm) of 1:5:18 and 0:12:12. As expected, the nanopyramid arrays have much 

lower reflectance R which are also less oscillatory compared to the thin film control 

due to the anti-reflection properties of the array of inclined surfaces (<R> ~ 7.9% vs ~ 

24.5% for gas flow rate of 0:12:12; and <R> ~ 8.7% vs ~ 27.7% for gas flow rate of 

1:5:18). Moreover, <R> for samples grown at a gas flow rate of 0:12:12 is less than 

that grown at a gas flow rate of 1:5:18. This may be related to the higher In content of 

the samples which have lower bandgaps and are hence capable of absorbing a wider 

range of energies.    
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Figure 6.25 Reflectance spectra at normal incidence of nanopyramid arrays (solid lines) and 

corresponding control (dash-dot lines) samples grown on AlN/Si(111) with H2:N2:NH3 gas 

flow rate (in slm) of 1:5:18 (blue lines) and 0:12:12 (red lines). For all cases, T = 775°C, P = 

300 Torr and growth duration of 40 min were employed 

 

6.7. Growth of InGaN/GaN MQW Core-Shell Nanopyramid Arrays 

As discussed in Section 1.2.4.3, core-shell architectures may be employed in 

nanostructures to enhance charge separation, reduce surface recombination and 

decouple (at least, partially) requirements for good absorption from charge separation. 

In this section, we successfully demonstrate the growth of InGaN/GaN MQW core-

shell structures on InGaN nanopyramids achieved in nano-SAG. The characteristics 

of the MQW nanopyramid arrays are examined and discussed. 

 

6.7.1. Experimental Procedure 

MOCVD growth conditions of T = 775°C, P = 300 Torr, TMGa:TMIn gas flow rate 

(in slm) of 5:120, H2:N2:NH3 gas flow rate (in slm) of 0:6:18, and growth duration of 

35 min were first employed to grow a faceted, uncoalesced InGaN nanopyramid array 

via nano-SAG on an AlN/Si(111)-based Type A template. This InGaN nanopyramid 

core is similar to the nanopyramids grown at 775°C in Section 6.3 except for a 

reduction in growth duration of 5 min. A five-period InGaN/GaN multiple quantum 
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well (MQW) structure was then grown while maintaining T and P. The structure was 

then capped by a GaN layer. As per usual practice, an unpatterned AlN/Si(111) 

substrate was used as a control substrate. FESEM, cross-sectional TEM, room 

temperature -PL and reflectance were used to characterize the grown structures. 

 

6.7.2. Morphology 

Figure 6.26(a) and (b) shows the surface morphology of the InGaN/GaN MQW film 

control and nanopyramid array samples respectively. Similar to the InGaN film 

samples grown previously, the surface of the MQW control is rough (feature size ~ 

several tens of nanometers) and undulating, although it remains reflective to the 

naked eye. Numerous pits populate the surface since these are the termination points 

of the many TDs. See Figure 6.27. The morphology is coarser than the InGaN film 

grown without MQWs (see Figure 6.19) due to a longer total growth duration. 

Despite the low total thickness (~ 210 nm InGaN/GaN layer and ~150 nm AlN), the 

surface of the film control is lined with cracks. These typically propagate along the 

family of <2110> directions or along the {1101} planes consistent with reports in 

literature [96, 340]. As discussed in Section 2.3.2, the cracks are generated upon 

cooling down from the growth temperatures to relax the high thermal stress 

associated with the large mismatch of thermal expansion coefficients between the III-

nitride layers and Si substrate.  

 

The MQW nanopyramid array remains crack-free even though the total height of the 

nanopyramid structure (~ 400 nm including the embedded section) exceeds that of the 

InGaN film in the control. This is due to strain relaxation afforded by segmentation 

into nanostructures. This clearly demonstrates another advantage of nanostructuring 

and further supports the validity of the approach to InGaN/Si tandem solar cell 

applications. While coalescing nanopyramids are observed, this occurs during growth 
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of the final GaN capping layer or after deposition of the five-period MQW structure 

is completed on the inclined semipolar {1101} facets as seen in Figure 6.28. Similar 

to prior observations of coalescing InGaN nanopyramids, coalescence of the GaN cap 

is initiated by ridges bridging adjacent nanopyramid sidewalls which roughen them. 

Sidewalls remain smooth when there are no sidewalls from neighboring 

nanopyramids that are sufficiently close as seen in Figure 6.26(b) inset.  

 

 

Figure 6.26 FESEM images showing the surface morphology after MQW growth for (a) 

InGaN thin film control, and (b) InGaN nanopyramid array grown via nano-SAG. Cracks 

oriented along the general <2110> directions are ubiquitous on the control. Coalescence of 

nanopyramids occurs during the GaN capping layer growth and manifests as ridges bridging 

adjacent sidewalls. Non-coalescing sidewalls remain smooth (see (b) inset). 

 

6.7.3. Structural Characteristics 

Figure 6.27 shows the cross-sectional TEM images of the InGaN/GaN MQW film 

control viewed along the [2110] zone axis. The jagged surface of the film arises from 

the high density of V-pits which are the termination points of TDs. As discussed in 

Section 5.3.3.1, many of these TDs originate from the lattice mismatched growth of 

the AlN buffer on Si, and propagate into the InGaN layer. The sidewalls forming the 

V-pits are mostly inclined at 62° to the basal plane indicating that they are {1101} 
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planes. Judging from the pitted morphology of Figure 6.26(a), it is probable that 

much of the surface is composed of {1101} planes, and growth of the film occurs 

through deposition on these inclined planes. Indeed, it is observed in Figure 6.27(c) 

that the five-period MQW structures, which also serve as markers of growth, are 

inclined at ~ 62° to the substrate plane and parallel to the V-pits.  

 

 

Figure 6.27 Cross-sectional TEM images of the InGaN/GaN MQW film control. (a) 

Overview of the structure. The dotted red line delineates a threading dislocation (TD) 

propagating in the InGaN/GaN film. TDs typically traverse the film along the [0001] line 

direction and terminate in a V-pit. The sidewalls of the V-pits are inclined at ~ 62° to the 

substrate plane suggesting that they are {1101} planes. (b) Corresponding SAED pattern of 

the InGaN/GaN layer indicating that TEM imaging was performed along the [2110] zone axis. 

(c) Close-up of the region bounded by the blue dotted box in (a) showing that the five-period 

MQW structure is deposited on the {1101} planes of the V-pits.  

 

Figure 6.28 shows the cross-sectional TEM images of an InGaN/GaN MQW 

nanopyramid viewed along the [2110] zone axis. Inclination of the {1101} sidewalls 

at ~ 62° to the basal planes is clearly observed. In Figure 6.28(a), the left sidewall 

roughens due to coalescence with an adjacent nanopyramid. This contrasts with the 

right sidewall which remains smooth. Coalescence can lead to generation of 
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coalescence dislocations (CD) between nanopyramids as seen in Figure 6.28(c). 

However, the density of these is less than the density of TDs blocked by the SiNy 

mask, such that an overall reduction of TDDs and improvement in structural quality 

is expected. Bending of TDs through 90° towards the InGaN/SiNy interface and 

towards the nanopyramid sidewalls due to the action of image forces is delineated in 

dotted red lines in Figure 6.28(a) and (c) respectively. That is, the growth temperature 

of 775°C is already sufficient to mobilize the TDs. TD bending at such a temperature 

and in InGaN has yet to be observed in literature. Prior work has largely concentrated 

on TD bending in GaN pyramids.  

 

The five-period InGaN/GaN MQW structure envelopes the nanopyramid on the 

semipolar {1101} sidewalls to form a core-shell nanopyramid structure. However, the 

thickness of the MQW layers on the left and right sidewalls are markedly different as 

seen in Figure 6.28(c) and (d) respectively. This indicates a difference in growth rate 

on the different sidewalls of a nanopyramid, accounting for the asymmetry of the 

hexagonal nanopyramids and their size distribution. This is similarly observed in the 

InGaN nanopyramids in Figure 6.1 grown at 300 Torr. As mentioned in Section 

6.3.1.1, the non-uniformity in sidewall and hence nanopyramid size may be due to 

unequal distribution of defect exits among the sidewalls. For instance, the thicker 

MQW layers (and higher growth rate) on the left sidewall in Figure 6.28(c) appear to 

be correlated to the exit of the bent TD. In contrast, the MQW layers are noticeably 

thinner on the right sidewall with no TD exit. 
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Figure 6.28 Cross-sectional TEM images of an InGaN/GaN MQW nanopyramid. (a) 

Overview of the nanostructure. The sidewalls are inclined at ~ 62° to the substrate plane 

indicating that they are {1101} planes. The coalescing sidewall is characterized by a rough 

surface. The MQWs envelopes the upper surface of the nanopyramid forming a core-shell 

structure. The dotted red line delineates a threading dislocation (TD) being bent 90° towards 

the InGaN/SiNy interface. (b) Corresponding SAED pattern of the InGaN/GaN layer 

indicating TEM imaging was performed along the [2110] zone axis. (c) Close-up of the left 

sidewall in (a) showing the five-period MQW structure.  The bending of a TD by 90° towards 

the nanopyramid sidewall and its exit from the structure is shown. A coalescence dislocation 

(CD) is also outlined. (d) Close-up of the right sidewall in (a) showing the five-period MQW 

structure. The MQW layers are noticeably thinner due to a slower growth rate. 

 

6.7.4. Photoluminescence 

Figure 6.29 shows the room temperature -PL spectra of the InGaN/GaN MQW 

nanopyramid array and film control. Compared to the InGaN film grown at 775°C in 

Figure 6.5, the PL intensity of the InGaN/GaN MQW film is noticeably higher, 

indicating the efficacy of the MQW structure. PL emission of the MQW nanopyramid 

array remains higher and red-shifted compared to the MQW film control (~ 3.05 eV 

vs ~ 3.23 eV), due to improved structural quality and increased In incorporation 

afforded by dislocation reduction and strain relaxation. Further, PL emission from the 

MQW of the nanopyramid array is blue-shifted compared to that of the pure InGaN 
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nanopyramid array in Figure 6.5 (~ 3.05 eV vs ~ 2.85 eV). This may be due to 

quantum confinement effects. The lower intensity shoulder on the high energy edge 

around ~ 3.42 eV is contributed by GaN emission. The results show that functional 

core-shell nanopyramid device structures can be generated using a nano-SAG 

approach in MOCVD. The same concept may be applied to grow nanopyramids 

consisting of an InGaN core and GaN (or differently doped InGaN) shell in an array 

structure on Si substrates for InGaN/Si tandem solar cell applications. 

 

 

Figure 6.29 Room-temperature -PL spectra of the InGaN/GaN MQW nanopyramid array 

(solid red line) and thin film control sample (dash-dot black line). 

 

6.7.5. Reflectance 

Figure 6.30 shows the reflectance at normal incidence of the MQW nanopyramid 

array and corresponding film control. Consistent with prior reflectance results, lower 

and much less oscillatory reflectance is obtained in the nanopyramid array compared 

to the film control due to the light-trapping properties of the nanostructure array. A 

low average reflectance <R> of 9.3%, slightly higher than prior arrays due to partial 

coalescence, is obtained compared to ~ 24.1% in the control. Further, it can be 

observed that the absorption edge of the nanopyramid array (onset of low reflectance) 

1.5 2.0 2.5 3.0 3.5 4.0

0.0

0.2

0.4

0.6

0.8

1.0

827 620 496 413 354 310

~ 2.85 eV

GaN 

emission 

~ 3.42 eV

InGaN nanopyramid 

core peak emission

Wavelength  (nm)

P
L
 I

n
te

n
s
it
y
 (

a
.u

.)

Energy E (eV)

 MQW nanopyramid array

 MQW control

Nanopyramid MQW 

emission ~ 3.05 eV

Control 

peak emission 

~ 3.23 eV



198 

 

occurs at lower energies than the film control, in line with its higher In content and 

smaller bandgap, and in accordance to PL measurements. 

 

 

Figure 6.30 Reflectance spectra at normal incidence of the InGaN/GaN MQW nanopyramid 

array (solid red line) and corresponding film control (dash-dot black line).  

 

6.8. Chapter Summary 

In this Chapter, the nano-SAG of InGaN nanopyramids using nanoporous Type A 

SiNy mask templates fabricated on AlN/Si(111) substrates was investigated in detail. 

Specifically, the influence of MOCVD growth conditions, namely, growth 

temperature T, reactor pressure P, growth duration, and gas flow rate are examined. 

The In content x, morphological, structural and PL qualities of the nanopyramid 

arrays are reported. Reduction in T permits increased x. However, low T (< 750°C) 

are correlated with lower crystal quality, polycrystalline deposits and In droplet 

formation. To maintain the quality, a moderately high T (~ 775°C) is used in 

conjunction with lower P, which enhances mass transport and suppresses In 

desorption, to increase x. This also enhances the growth rate, and improves 

nanopyramid and facet size uniformity by mitigating the effects of non-uniform 

defect exits on sidewall growth rates. Nanopyramid arrays generally exhibit greater 
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lattice tilt than the corresponding thin film control due to dislocation bending. 

Notwithstanding this, increase in tilt with reduced P and hence increased x is slight. 

While lattice twist increases more notably with higher x, it is offset by epitaxial 

lateral overgrowth (ELO) and coalescence. The degradation of structural quality with 

x is contributed by the greater lattice mismatch. Compared to control samples, 

nanopyramid samples consistently yielded higher In content, lower average 

reflectance (< 9%) and a multi-fold increase in photoluminescence intensity with 

tunable emission energies from 3.05 eV to 1.93 eV.  

 

Increased growth duration promotes ELO and coalescence, and improves structural 

quality, evident by reduced lattice tilt and twist in the nanopyramid array. Increase in 

x also results due to further strain relaxation. However, roughening of sidewalls 

during coalescence degrades the anti-reflection properties. On the other hand, for 

small nanopyramids with little overgrowth, the AlN buffer substantially limits the 

structural quality. Growth of uncoalesced nanopyramids but with greater overgrowth 

is thus advocated. This may be achieved through nanoporous mask templates with 

suitably large ratio of array period : nanopore size. Introduction of H2 in a H2:N2:NH3 

flow rate (in slm) of 1:5:18 during MOCVD growth improves morphology and 

narrows PL emission for InGaN thin films. For both control film and nanopyramid 

array, structural properties are also improved but at the expense of reduced x and 

growth rate. A N2 environment with no or just a minor fraction of H2 should be used 

for growth of higher In content InGaN. Reducing the V/III ratio by decreasing NH3 

flow rate in a H2:N2:NH3 flow rate (in slm) of 0:12:12, degrades the morphological 

and structural properties of both sample types but increases x. While the increase in x 

is greater in the nanopyramids, the degradation is also more severe. Considering this, 

a high V/III ratio should be maintained. Lastly, functional InGaN/GaN MQW core-

shell structures are successfully grown crack-free on InGaN nanopyramid array in 
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contrast to the cracked thin film control. The MQW structure also serve as markers 

elucidating the growth process, and show that dislocation bending towards and 

exiting the sidewalls of the nanopyramid can influence the sidewall growth rate. 

 

In summary, this Chapter forms a guide for growing InGaN nanopyramids with 

variable properties through nano-SAG on AlN/Si(111) in MOCVD.  
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Chapter 7 Conclusion and Future Work 

 

7.1. Conclusion  

This work explores the integration of InxGa1-xN with highly ordered nanostructures on 

Si substrates for the development of vertically integrated InGaN/Si tandem solar cells. 

Two nanostructured growth approaches are proposed, namely, (A) nano selective area 

growth (nano-SAG) of InGaN through a nanoporous SiNy mask fabricated on Si(111) 

substrate or Scheme A, and (B) nanoheteroepitaxy on Si nanopillar substrate or 

Scheme B. Both approaches are postulated to improve crystal quality of high In 

content InGaN and provide key benefits for the proposed photovoltaic application. 

For a manageable scope, nano-SAG was selected and explored in detail. Highly 

ordered arrays of InGaN hexagonal nanopyramids were successfully heteroepitaxially 

grown on AlN-buffered Si substrates by MOCVD and exhibit improved structural 

quality, higher In content (x up to ~ 0.42), no phase separation, and substantially 

lower reflectance (<  9%) than InGaN films. Functional core-shell MQW 

nanopyramids are also demonstrated. The results support the initial claims and show 

the validity of the approach. Such a focused approach towards nanostructured 

InGaN/Si tandem photovoltaics has yet to be attempted by other groups. 

 

Preliminary work involved the development of nanopatterning techniques based on 

Step and Flash
TM

 Imprint Lithography (S-FIL
TM

), a form of wafer-scale nanoimprint 

lithography. For Scheme A, uniform, tunable aspect ratio nanoporous SiNy templates 

on AlN/Si(111) substrates were fabricated by combining S-FIL
TM

 with angled metal 

deposition or anodization of aluminum oxide (AAO). For Scheme B, Si nanopillar 

arrays of variable patterns and adjustable aspect ratio were realized by combining S-

FIL
TM

 with metal-catalyzed electroless etching (MCEE). For proof-of-concept and to 
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ensure a manageable scope, only Type A nanostructured templates were selected for 

InGaN growth. 

 

Next, scaling of InGaN films into three-dimensional nanostructures on AlN/Si(111) 

substrate was presented. The results of a MOCVD growth study of InGaN films on 

the unpatterned substrates were first shown. High temperature in-situ annealing of the 

AlN/Si(111) substrate in H2 at 1000°C was found to be critical to obtaining epitaxial 

growth. Further, elevated pressures (~ 300 Torr) aid in obtaining single phase InGaN 

(x ~ 0.40) at low growth temperatures (~ 655°C), while relatively high temperatures (> 

765°C) improves crystal quality albeit at the expense of In content. Taking these 

factors into consideration, InGaN nanostructured growth via nano-SAG on 

AlN/Si(111)-based Type A template was performed at 780°C and 300 Torr. Three-

dimensional InGaN hexagonal nanopyramids in a dense edge-to-edge array were 

successfully grown with good growth selectivity. Strain relaxation, dislocation 

confinement and filtering result in improved InGaN crystalline quality. Only one non-

radiative recombination channel (EA = 72 meV) was detected in the nanopyramid 

array compared to two (EA = 14 meV and 131 meV) in the film control.  Compared to 

the film control, the nanopyramid array has higher In content (~ 10.6% vs ~ 6.1%), 

higher internal quantum efficiency (17.5% vs 4.4%) and substantially lower 

reflectance (8.3% vs 23.6%). This affirms the initial proposition on the benefits of 

InGaN nanostructuring for the development of high efficiency InGaN/Si hybrid 

tandem solar cells. 

 

Subsequently, nano-SAG of InGaN nanopyramids using nanoporous Type A SiNy 

mask templates fabricated on AlN/Si(111) substrates was investigated in detail. 

Specifically, the influence of MOCVD growth conditions, namely, growth 

temperature T, reactor pressure P, growth duration, and gas flow rate were examined. 
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Reduction in T permits increased In content x. However, low T (< 750°C) are 

correlated with lower crystal quality, polycrystalline deposits and In droplet 

formation. To maintain the quality, a moderately high T (~ 775°C) was used in 

conjunction with lower P, which enhances mass transport and suppresses In 

desorption, to increase x. This also enhances the growth rate, and improves 

nanopyramid and facet size uniformity by mitigating the effects of non-uniform 

defect “exits” on sidewall growth rates. Nanopyramid arrays generally exhibit greater 

lattice tilt than the corresponding thin film control due to dislocation bending. 

Notwithstanding this, increase in tilt with reduced P and hence increased x is slight. 

While lattice twist increases more notably with higher x, it is offset by epitaxial 

lateral overgrowth (ELO) and coalescence. The degradation of structural quality with 

x is contributed by the greater lattice mismatch. Compared to control samples, 

nanopyramid samples consistently yielded higher In content, lower average 

reflectance (< 9%) and a multi-fold increase in photoluminescence intensity with 

tunable emission energies from 3.05 eV to 1.93 eV.  

 

Increased growth duration promotes ELO and coalescence, and improves structural 

quality. This is evidenced by the reduced lattice tilt and twist in the nanopyramid 

array with the FWHM of the (0002) and (20.1) -scans decreasing below that of the 

underlying AlN buffer to 0.630° and 1.022° respectively. Increase in x also results 

due to further strain relaxation. However, roughening of sidewalls during coalescence 

degrades the anti-reflection properties. On the other hand, for small nanopyramids 

with little overgrowth, the AlN buffer substantially limits the structural quality. 

Growth of uncoalesced nanopyramids but with greater overgrowth is thus advocated. 

Introduction of H2 in a H2:N2:NH3 flow rate (in slm) of 1:5:18 during MOCVD 

growth smoothens the morphology and improves PL characteristics for InGaN films 

(from broad near-band-edge (NBE) and defect-related PL to narrow NBE PL with 
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FWHM ~ 110 meV). For both film and nanopyramid array, structural properties are 

also improved but at the expense of reduced x and growth rate. A N2 environment 

with no or just a minor fraction of H2 should be used for growth of high In content 

InGaN. Reducing the V/III ratio by decreasing NH3 flow rate in a H2:N2:NH3 flow 

rate (in slm) of 0:12:12, degrades the morphological and structural properties of both 

sample types but increases x. While the increase in x is greater in the nanopyramids, 

the degradation is severe. Considering this, a high V/III ratio greater than 6100 should 

be maintained. A V/III ratio of 9200 is commonly used in this work. Lastly, 

functional InGaN/GaN MQW core-shell structures are successfully grown crack-free 

on an InGaN nanopyramid array in contrast to the cracked film control. The 

nanopyramid MQW PL emission is approximately two times as high as the InGaN 

nanopyramid core but is blue-shifted from ~ 2.85 eV to ~ 3.05 eV due to quantum 

confinement effects. The MQW structure also serve as markers elucidating the 

growth process, and show that dislocation bending towards and exiting the sidewalls 

of the nanopyramid can influence the sidewall growth rate.  

 

As discussed in Section 1.2.3, the technical barriers of InGaN solar cells are related to 

growth issues which affect structural quality, and polarization effects. We have 

experimentally shown that improved structural quality and increased In content 

InGaN nanostructures can be achieved on Si substrates. These further possess 

reduced reflectance. Growth on the semipolar {1-101} facets (with reduced 

polarization effects) of functional InGaN/GaN core-shell nanostructures has also been 

demonstrated. The results (1) support the initial proposition for the integration of 

InGaN with nanostructures on Si for nanostructured InGaN/Si tandem solar cell 

applications, and (2) form a guide for tuning the properties of InGaN nanopyramids 

MOCVD-grown via nano-SAG on AlN/Si(111). These findings are expected to fill a 
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void in the InGaN/Si photovoltaic community where the growth of InGaN film on Si 

by MOCVD has met with limited success. 

 

 

7.2. Recommendations for Future Work 

The long-term goal extrapolated for this work is the realization of monolithic 

vertically integrated InGaN/Si tandem solar cells. The results of this work have 

shown promise in a nanostructuring approach. However, certain areas deserve further 

investigation. These are listed as follows. 

 

First, relatively high average In content x of up to ~ 0.27 has been estimated by XRD 

in the InGaN nanopyramids. However, the same sample emit PL at energies down to  

~ 1.93 eV corresponding to even higher In content of x ~ 0.42. Although this is 

attributed to efficient luminescent centers, suspected to be located at the ridges 

formed during coalescence, it also suggests that higher x may be achievable. One way 

that this can be attained is through further reduction in reactor pressure P to below 70 

Torr and/or adjustment of the precursor flow rates. The TMIn flow rate in this work is 

maintained at 120 sccm for consistency. This is notably lower than that used in 

separate experiments. As such, future work can investigate the influence of these 

changes in growth conditions to obtain even broader range of In content. 

 

Second, the nano-SAG pattern used in this work is restricted to a period of 300 nm 

due to the unavailability of nanoimprint moulds of other patterns. From the results 

obtained in this work, array patterns with longer period and smaller opening size to 

increase epitaxial lateral overgrowth (ELO) and nanopyramid size without invoking 

coalescence can aid in improving structural quality. A reduction in size of the 

template openings for nano-SAG may be beneficial for enhanced dislocation filtering 
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and bending. Also, nano-void formation in nanopyramids may be reduced due to a 

reduction in distance between the core region and mask edges for adatom migration. 

A coarser, higher relief morphology and smaller template openings is further 

expected to offer greater strain relaxation for improved In incorporation. By 

performing growth without coalescence, the smooth sidewalls maintain the light-

trapping capabilities of the array. Simulation experiments to investigate the light-

trapping properties of different array periods and nanopyramid sizes may be 

performed to gain a better understanding of the phenomenon. 

 

Third, in Section 6.4.1.3, dark contrast features or notches on the sidewalls of InGaN 

nanopyramids have been observed. These features have yet to be identified although 

there is a strong case that they are related to the exit of TDs at the sidewalls. Further 

investigation is thus suggested. 

 

Fourth, in order to complete the proof-of-concept of a functional nanopyramid 

InGaN/Si tandem solar cell, some additional work needs to be performed. This 

includes the development and growth of p-type GaN or InGaN as a capping layer on 

the nanopyramids. Also, suitable designs considering doping, contact formation, 

device architectures, etc. of the Si bottom cell and GaN/InGaN top cell needs to be 

worked out. That is, considerable scope still exists for achieving the long-term goal of 

nanopyramid InGaN/Si tandem solar cell. 

 

Lastly, Type B templates or Si nanostructure arrays have been fabricated from S-

FIL
TM

 and metal-catalyzed electroless etching (MCEE). However, these have yet to 

be utilized for InGaN growth. An analogous approach for nanoheteroepitaxy can be 

embarked on these templates to gauge their effectiveness in comparison to nano-SAG 

on Type A templates.    
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