81 research outputs found

    Local Conditional Neural Fields for Versatile and Generalizable Large-Scale Reconstructions in Computational Imaging

    Full text link
    Deep learning has transformed computational imaging, but traditional pixel-based representations limit their ability to capture continuous, multiscale details of objects. Here we introduce a novel Local Conditional Neural Fields (LCNF) framework, leveraging a continuous implicit neural representation to address this limitation. LCNF enables flexible object representation and facilitates the reconstruction of multiscale information. We demonstrate the capabilities of LCNF in solving the highly ill-posed inverse problem in Fourier ptychographic microscopy (FPM) with multiplexed measurements, achieving robust, scalable, and generalizable large-scale phase retrieval. Unlike traditional neural fields frameworks, LCNF incorporates a local conditional representation that promotes model generalization, learning multiscale information, and efficient processing of large-scale imaging data. By combining an encoder and a decoder conditioned on a learned latent vector, LCNF achieves versatile continuous-domain super-resolution image reconstruction. We demonstrate accurate reconstruction of wide field-of-view, high-resolution phase images using only a few multiplexed measurements. LCNF robustly captures the continuous object priors and eliminates various phase artifacts, even when it is trained on imperfect datasets. The framework exhibits strong generalization, reconstructing diverse objects even with limited training data. Furthermore, LCNF can be trained on a physics simulator using natural images and successfully applied to experimental measurements on biological samples. Our results highlight the potential of LCNF for solving large-scale inverse problems in computational imaging, with broad applicability in various deep-learning-based techniques

    Dephasing of ultracold cesium 80D5/280D_{5/2}-Rydberg Electromagnetically Induced Transparency

    Full text link
    We study Rydberg electromagnetically induced transparency (EIT) of a cascade three-level atom involving 80D5/2D_{5/2} state in a strong interaction regime employing a cesium ultracold cloud. In our experiment, a strong coupling laser couples 6P3/2P_{3/2} to 80D5/2D_{5/2} transition, while a weak probe, driving 6S1/2S_{1/2} to 6P3/2P_{3/2} transition, probes the coupling induced EIT signal. At the two-photon resonance, we observe that the EIT transmission decreases slowly with time, which is a signature of interaction induced metastability. The dephasing rate γOD\gamma_{\rm OD} is extracted with optical depth OD = γODt\gamma_{\rm OD}t. We find that the optical depth linearly increases with time at onset for a fixed probe incident photon number RinR_{\rm in} before saturation. The dephasing rate shows a nonlinear dependence on RinR_{\rm in}. The dephasing mechanism is mainly attributed to the strong dipole-dipole interactions, which leads to state transfer from nD5/2nD_{5/2} to other Rydberg states. We demonstrate that the typical transfer time τ0(80D)\tau_{0(80D)} obtained by the state selective field ionization technique is comparable with the decay time of EIT transmission τ0(EIT)\tau_{0({\rm EIT})}. The presented experiment provides a useful tool for investigating the strong nonlinear optical effects and metastable state in Rydberg many-body systems.Comment: 7 pages, 5 figure

    PO-109 Resistance Training prevents Skeletal Muscle Atrophy Induced by hypoxia through regulating Akt-FoxO1 pathway

    Get PDF
    Objective Skeletal muscle atrophy induced by hypoxia on the plateau will lead to the decrease of muscle strength and the degeneration of athletic ability. Resistance training is an efficient method to stimulate the growth of muscle and improve protein synthesis. Akt-FoxO1 (Fork head box protein 1) pathway plays a significant role in the regulation of skeletal muscle protein degradation. However, it is not clear whether resistance training could prevent skeletal muscle atrophy induced by hypoxia and what is the regulation role of Akt-FoxO1 pathway. This study built a rat model that resistance training inhibited the skeletal muscle atrophy induced by hypoxia and explore the variation of Akt, FoxO1, Murf and Atrogin-1. Methods 40 male 8-week-old Sprague-Dawley (SD) rats were divided into 4 groups randomly: control group (C), resistance training group (R), hypoxia group (H) and hypoxia resistance training group (HR). H and HR group were placed into simulated 4000m altitude (12.4%, O2%) and R and HR group received ladder resistance training. Their incremental load is calculated by using average body weight. After 4 weeks intervention of hypoxia and resistance training, body composition, wet weight of skeletal muscle (soleus, musculus gastrocnemius,extensor digitorum longus and muscelus biceps brachii) and skeletal muscle cross-sectional area (CSA) were measured. The expression of Akt, FoxO1, Murf and Atrogin-1 were detected by Western blot and RT-PCR.Moreover,immunofluorescence technique was used to locate the phosphorylation of FoxO1.  Results The lean body mass of HR group was significantly higher than H group (P<0.05). The wet weight and CSA of muscelus biceps brachii in HR group were also higher than H group obviously (P<0.05). The results of real-time fluorescence quantitative PCR and western blot showed that the expression of FoxO1 and MuRF of hypoxia group (H group) were significantly higher than control group. However after the intervention of resistance training, the expression of Akt was significantly up-regulate and FoxO1, MuRF were significantly down-regulate. Immunofluorescence technique was used to observe the location of FoxO1 phosphorylation and the expression out of nucleus. Conclusions Resistance training contribute to prevent the occurrence of skeletal muscle atrophy induced by hypoxia and the form of climbing ladder training can stimulate the hypertrophy of biceps in rats. The results revealed that FoxO1 phosphorylation out of nucleus became higher after resistance training. All above revealed that resistance training could inhibit skeletal muscle atrophy induced by hypoxia. Akt promoted FoxO1 phosphorylation may become the molecular mechanisms that resistance training can inhibit the atrophy of skeletal muscle induced by hypoxia

    Enhanced dark hydrogen fermentation of Enterobacter aerogenes/HoxEFUYH with carbon cloth

    Get PDF
    Long-range extracellular electron transfer through microbial nanowires is critical for efficient bacterial behaviors. The application of carbon cloth on the dark hydrogen fermentation using transgenic Enterobacter aerogenes (E. aerogenes/HoxEFUYH) was first proposed to enhance hydrogen production from glucose. Scanning electron microscopy images showed that the microbial nanowires between E. aerogenes/HoxEFUYH cells almost vanished due to the presence of carbon cloth. Approximately 59.1% of microorganisms concentrated in biofilms on the surface of carbon cloth, which probably promoted the intercellular electron transfer. The results from Fourier transform infrared spectra and Excitation Emission Matrix spectra indicated that carbon cloth biofilms primarily included polysaccharide and protein. Moreover, the fluorophore of biofilms (88.1%) was much higher than that of supernatant (11.9%). The analysis of soluble metabolic degradation byproducts revealed that carbon cloth selectively enhanced the acetate pathway (C6H12O6+2H2O→2CH3COOH+2CO2+4H2), but weakened the ethanol pathway (C6H12O6→2C2H5OH+2CO2). With 1.0 g/L carbon cloth, the hydrogen yield increased by 26.6% to 242 mL/g, and the corresponding peak hydrogen production rate increased by 60.3%

    Fabrication, microstructures, and optical properties of Yb:Lu2O3 laser ceramics from co-precipitated nano-powders

    Get PDF
    AbstractThe Yb:Lu2O3 precursor made up of spherical particles was synthesized through the co-precipitation method in the water/ethanol solvent. The 5 at% Yb:Lu2O3 powder is in the cubic phase after calcination at 1100 °C for 4 h. The powder also consists of spherical nanoparticles with the average particle and grain sizes of 96 and 49 nm, respectively. The average grain size of the pre-sintered ceramic sample is 526 nm and that of the sample by hot isostatic pressing grows to 612 nm. The 1.0 mm-thick sample has an in-line transmittance of 81.6% (theoretical value of 82.2%) at 1100 nm. The largest absorption cross-section at 976 nm is 0.96×10−20 cm2 with the emission cross-section at 1033 nm of 0.92×10−20 cm2 and the gain cross sections are calculated with the smallest population inversion parameter β of 0.059. The highest slope efficiency of 68.7% with the optical efficiency of 65.1% is obtained at 1033.3 nm in quasi-continuous wave (QCW) pumping. In the case of continuous wave (CW) pumping, the highest slope efficiency is 61.0% with the optical efficiency of 54.1%. The obtained laser performance indicates that Yb:Lu2O3 ceramics have excellent resistance to thermal load stresses, which shows great potential in high-power solid-state laser applications

    Dephasing of ultracold cesium 80D5/2-Rydberg electromagnetically induced transparency

    Get PDF
    We study Rydberg electromagnetically induced transparency (EIT) of a cascade three-level atom involving 80D5/2 state in a strong interaction regime employing a cesium ultracold cloud. In our experiment, a strong coupling laser couples 6P3/2 to 80D5/2 transition, while a weak probe, driving 6S1/2 to 6P3/2 transition, probes the coupling induced EIT signal. At the two-photon resonance, we observe that the EIT transmission decreases slowly with time, which is a signature of interaction induced metastability. The dephasing rate γOD is extracted with optical depth OD = γODt. We find that the optical depth linearly increases with time at onset for a fixed probe incident photon number Rin before saturation. The dephasing rate shows a nonlinear dependence on Rin. The dephasing mechanism is mainly attributed to the strong dipole-dipole interactions, which leads to state transfer from nD5/2 to other Rydberg states. We demonstrate that the typical transfer time τ0(80D) obtained by the state selective field ionization technique is comparable with the decay time of EIT transmission τ0(EIT). The presented experiment provides a useful tool for investigating the strong nonlinear optical effects and metastable state in Rydberg many-body systems

    Nutlin-3 overcomes arsenic trioxide resistance and tumor metastasis mediated by mutant p53 in Hepatocellular Carcinoma

    Get PDF
    Background: Arsenic trioxide has been demonstrated as an effective anti-cancer drug against leukemia and solid tumors both in vitro and in vivo. However, recent phase II trials demonstrated that single agent arsenic trioxide was poorly effective against hepatocellular carcinoma (HCC), which might be due to drug resistance. Methods: Mutation detection of p53 gene in arsenic trioxide resistant HCC cell lines was performed. The therapeutic effects of arsenic trioxide and Nutlin-3 on HCC were evaluated both in vitro and in vivo. A series of experiments including MTT, apoptosis assays, co-Immunoprecipitation, siRNA transfection, lentiviral infection, cell migration, invasion, and epithelial-mesenchy-mal transition (EMT) assays were performed to investigate the underlying mechanisms. Results: The acquisition of p53 mutation contributed to arsenic trioxide resistance and enhanced metastatic potential of HCC cells. Mutant p53 (Mutp53) silence could re-sensitize HCC resistant cells to arsenic trioxide and inhibit the metastatic activities, while mutp53 overexpression showed the opposite effects. Neither arsenic trioxide nor Nutlin-3 could exhibit obvious effects against arsenic trioxide resistant HCC cells, while combination of them showed significant effects. Nutlin-3 can not only increase the intracellular arsenicals through inhibition of p-gp but also promote the p73 activation and mutp53 degradation mediated by arsenic trioxide. In vivo experiments indicated that Nutlin-3 can potentiate the antitumor activities of arsenic trioxide in an orthotopic hepatic tumor model and inhibit the metastasis to lung. Conclusions: Acquisitions of p53 mutations contributed to the resistance of HCC to arsenic trioxide. Nutlin-3 could overcome arsenic trioxide resistance and inhibit tumor metastasis through p73 activation and promoting mutant p53 degradation mediated by arsenic trioxide

    Dephasing of ultracold cesium 80í µí°· 5/2 -Rydberg Electromagnetically Induced Transparency

    Get PDF
    We study Rydberg electromagnetically induced transparency (EIT) of a cascade three-level atom involving 80í µí°· 5/2 state in a strong interaction regime employing a cesium ultracold cloud. In our experiment, a strong coupling laser couples 6í µí± 3/2 to 80í µí°· 5/2 transition, while a weak probe, driving 6í µí± 1/2 to 6í µí± 3/2 transition, probes the coupling induced EIT signal. At the two-photon resonance, we observe that the EIT transmission decreases slowly with time, which is a signature of interaction induced metastability. The dephasing rate í µí»¾ OD is extracted with optical depth OD = í µí»¾ OD í µí±¡. We find that the optical depth linearly increases with time at onset for a fixed probe incident photon number í µí± in before saturation. The dephasing rate shows a nonlinear dependence on í µí± in. The dephasing mechanism is mainly attributed to the strong dipole-dipole interactions, which leads to state transfer from í µí±í µí°· 5/2 to other Rydberg states. We demonstrate that the typical transfer time í µí¼ 0(80í µí°·) obtained by the state selective field ionization technique is comparable with the decay time of EIT transmission í µí¼ 0(EIT). The presented experiment provides a useful tool for investigating the strong nonlinear optical effects and metastable state in Rydberg many-body systems

    Association Between Single Nucleotide Polymorphisms in PPARA and EPAS1 Genes and High-Altitude Appetite Loss in Chinese Young Men

    Get PDF
    Appetite loss is a common symptom that occurs in high altitude (HA) for lowlanders. Previous studies indicated that hypoxia is the initiating vital factor of HA appetite loss. PPARA, EPAS1, EGLN1, HIF1A, HIF1AN, and NFE2L2 play important roles in hypoxic responses. We aimed to explore the association of these hypoxia-related gene polymorphisms with HA appetite loss. In this study, we enrolled 416 young men who rapidly ascended to Lhasa (3700 m) from Chengdu (<500m) by plane. PPARA, EPAS1, EGLN1, HIF1A, HIF1AN, and NFE2L2 were genotyped by MassARRAY. Appetite scores were measured to identify HA appetite loss. Logistic regression and multiple genetic models were tested to evaluate the association between the single nucleotide polymorphisms (SNPs) and risk of HA appetite loss in crude and adjusted (age and SaO2) analysis. Subsequently, Haploview software was used to analyze the linkage disequilibrium (LD), haplotype construction and the association of diverse haplotypes with the risk of HA appetite loss. Our results revealed that allele “A” in PPARA rs4253747 was significantly associated with the increased risk of HA appetite loss. Codominant, dominant, recessive, and log-additive models of PPARA rs4253747 showed the increased risk of HA appetite loss in the crude and adjusted analysis. However, only dominant, overdominant, and log-additive models of EPAS1 rs6756667 showed decreased risk of HA appetite loss in the crude and adjusted analysis. Moreover, the results from haplotype-based test showed that the rs7292407-rs6520015 haplotype “AC” was associated with HA appetite loss in the crude analysis rather than the adjusted analysis. In this study, we first established the association of SNPs in PPARA (rs4253747) and EPAS1 (rs6756667) genes with susceptibility to HA appetite loss in Han Chinese young men. These findings provide novel insights into understanding the mechanisms involved in HA appetite loss
    corecore